A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://zenodo.org/badge/latestdoi/155220641 below:

Transformers: State-of-the-Art Natural Language Processing

Published October 1, 2020 | Version v4.25.1

Software Open

Transformers: State-of-the-Art Natural Language Processing Creators Description

PyTorch 2.0 stack support

We are very excited by the newly announced PyTorch 2.0 stack. You can enable torch.compile on any of our models, and get support with the Trainer (and in all our PyTorch examples) by using the torchdynamo training argument. For instance, just add --torchdynamo inductor when launching those examples from the command line.

This API is still experimental and may be subject to changes as the PyTorch 2.0 stack matures.

Note that to get the best performance, we recommend:

Audio Spectrogram Transformer

The Audio Spectrogram Transformer model was proposed in AST: Audio Spectrogram Transformer by Yuan Gong, Yu-An Chung, James Glass. The Audio Spectrogram Transformer applies a Vision Transformer to audio, by turning audio into an image (spectrogram). The model obtains state-of-the-art results for audio classification.

Jukebox

The Jukebox model was proposed in Jukebox: A generative model for music by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. It introduces a generative music model which can produce minute long samples that can be conditionned on an artist, genres and lyrics.

Switch Transformers

The SwitchTransformers model was proposed in Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity by William Fedus, Barret Zoph, Noam Shazeer.

It is the first MoE model supported in transformers, with the largest checkpoint currently available currently containing 1T parameters.

RocBert

The RoCBert model was proposed in RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. It's a pretrained Chinese language model that is robust under various forms of adversarial attacks.

CLIPSeg

The CLIPSeg model was proposed in Image Segmentation Using Text and Image Prompts by Timo Lüddecke and Alexander Ecker. CLIPSeg adds a minimal decoder on top of a frozen CLIP model for zero- and one-shot image segmentation.

NAT and DiNAT NAT

NAT was proposed in Neighborhood Attention Transformer by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.

It is a hierarchical vision transformer based on Neighborhood Attention, a sliding-window self attention pattern.

DiNAT

DiNAT was proposed in Dilated Neighborhood Attention Transformer by Ali Hassani and Humphrey Shi.

It extends NAT by adding a Dilated Neighborhood Attention pattern to capture global context, and shows significant performance improvements over it.

MobileNetV2

The MobileNet model was proposed in MobileNetV2: Inverted Residuals and Linear Bottlenecks by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.

MobileNetV1

The MobileNet model was proposed in MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.

Image processors

Image processors replace feature extractors as the processing class for computer vision models.

Important changes:

The classes are backwards compatible and can be created using existing feature extractor configurations - with the size parameter converted.

Backbone for computer vision models

We're adding support for a general AutoBackbone class, which turns any vision model (like ConvNeXt, Swin Transformer) into a backbone to be used with frameworks like DETR and Mask R-CNN. The design is in early stages and we welcome feedback.

Support for

safetensors

offloading

If the model you are using has a safetensors checkpoint and you have the library installed, offload to disk will take advantage of this to be more memory efficient and roughly 33% faster.

Contrastive search in the

generate

method

Breaking changes

Bugfixes and improvements

Significant community contributions

The following contributors have made significant changes to the library over the last release:

Notes

If you use this software, please cite it using these metadata.

Files

huggingface/transformers-v4.25.1.zip

Additional details

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4