A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://z3prover.github.io/api/html/z3py_8py_source.html below:

Z3: doc/tmp/z3py.py Source File

9 """Z3 is a high performance theorem prover developed at Microsoft Research. 11 Z3 is used in many applications such as: software/hardware verification and testing, 12 constraint solving, analysis of hybrid systems, security, biology (in silico analysis), 13 and geometrical problems. 16 Please send feedback, comments and/or corrections on the Issue tracker for 17 https://github.com/Z3prover/z3.git. Your comments are very valuable. 38 ... x = BitVec('x', 32) 40 ... # the expression x + y is type incorrect 42 ... except Z3Exception as ex: 43 ... print("failed: %s" % ex) 48 from

.z3types

import

*

49 from

.z3consts

import

*

50 from

.z3printer

import

*

51 from

fractions

import

Fraction

56 if

sys.version_info.major >= 3:

57  from

typing

import

Iterable

67 if

sys.version_info.major < 3:

69  return

isinstance(v, (int, long))

72  return

isinstance(v, int)

84

major = ctypes.c_uint(0)

85

minor = ctypes.c_uint(0)

86

build = ctypes.c_uint(0)

87

rev = ctypes.c_uint(0)

89  return "%s.%s.%s"

% (major.value, minor.value, build.value)

93

major = ctypes.c_uint(0)

94

minor = ctypes.c_uint(0)

95

build = ctypes.c_uint(0)

96

rev = ctypes.c_uint(0)

98  return

(major.value, minor.value, build.value, rev.value)

105 def

_z3_assert(cond, msg):

107  raise

Z3Exception(msg)

110 def

_z3_check_cint_overflow(n, name):

111

_z3_assert(ctypes.c_int(n).value == n, name +

" is too large"

)

115  """Log interaction to a file. This function must be invoked immediately after init(). """ 120  """Append user-defined string to interaction log. """ 125  """Convert an integer or string into a Z3 symbol.""" 132 def

_symbol2py(ctx, s):

133  """Convert a Z3 symbol back into a Python object. """ 146  if

len(args) == 1

and

(isinstance(args[0], tuple)

or

isinstance(args[0], list)):

148  elif

len(args) == 1

and

(isinstance(args[0], set)

or

isinstance(args[0], AstVector)):

149  return

[arg

for

arg

in

args[0]]

158 def

_get_args_ast_list(args):

160  if

isinstance(args, (set, AstVector, tuple)):

161  return

[arg

for

arg

in

args]

168 def

_to_param_value(val):

169  if

isinstance(val, bool):

170  return "true" if

val

else "false" 181  """A Context manages all other Z3 objects, global configuration options, etc. 183  Z3Py uses a default global context. For most applications this is sufficient. 184  An application may use multiple Z3 contexts. Objects created in one context 185  cannot be used in another one. However, several objects may be "translated" from 186  one context to another. It is not safe to access Z3 objects from multiple threads. 187  The only exception is the method `interrupt()` that can be used to interrupt() a long 189  The initialization method receives global configuration options for the new context. 194

_z3_assert(len(args) % 2 == 0,

"Argument list must have an even number of elements."

)

213  if

Z3_del_context

is not None and

self.

owner

owner:

219  """Return a reference to the actual C pointer to the Z3 context.""" 223  """Interrupt a solver performing a satisfiability test, a tactic processing a goal, or simplify functions. 225  This method can be invoked from a thread different from the one executing the 226  interruptible procedure. 231  """Return the global parameter description set.""" 240  """Return a reference to the global Z3 context. 243  >>> x.ctx == main_ctx() 248  >>> x2 = Real('x', c) 255  if

_main_ctx

is None

:

272  """Set Z3 global (or module) parameters. 274  >>> set_param(precision=10) 277

_z3_assert(len(args) % 2 == 0,

"Argument list must have an even number of elements."

)

281  if not

set_pp_option(k, v):

296  """Reset all global (or module) parameters. 302  """Alias for 'set_param' for backward compatibility. 308  """Return the value of a Z3 global (or module) parameter 310  >>> get_param('nlsat.reorder') 313

ptr = (ctypes.c_char_p * 1)()

315

r = z3core._to_pystr(ptr[0])

317  raise

Z3Exception(

"failed to retrieve value for '%s'"

% name)

329  """Superclass for all Z3 objects that have support for pretty printing.""" 334  def

_repr_html_(self):

335

in_html = in_html_mode()

336

set_html_mode(

True

)

338

set_html_mode(in_html)

343  """AST are Direct Acyclic Graphs (DAGs) used to represent sorts, declarations and expressions.""" 347

self.

ctx

ctx = _get_ctx(ctx)

351  if

self.

ctx

ctx.ref()

is not None and

self.

ast

ast

is not None and

Z3_dec_ref

is not None

:

356  return

_to_ast_ref(self.

ast

ast, self.

ctx

ctx)

359  return

obj_to_string(self)

362  return

obj_to_string(self)

365  return

self.

eq

eq(other)

368  return

self.

hash

hash()

378  elif is_eq

(self)

and

self.num_args() == 2:

379  return

self.arg(0).

eq

(self.arg(1))

381  raise

Z3Exception(

"Symbolic expressions cannot be cast to concrete Boolean values."

)

384  """Return a string representing the AST node in s-expression notation. 387  >>> ((x + 1)*x).sexpr() 393  """Return a pointer to the corresponding C Z3_ast object.""" 397  """Return unique identifier for object. It can be used for hash-tables and maps.""" 401  """Return a reference to the C context where this AST node is stored.""" 402  return

self.

ctx

ctx.ref()

404  def eq

(self, other):

405  """Return `True` if `self` and `other` are structurally identical. 412  >>> n1 = simplify(n1) 413  >>> n2 = simplify(n2) 418

_z3_assert(

is_ast

(other),

"Z3 AST expected"

)

422  """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`. 428  >>> # Nodes in different contexts can't be mixed. 429  >>> # However, we can translate nodes from one context to another. 430  >>> x.translate(c2) + y 434

_z3_assert(isinstance(target, Context),

"argument must be a Z3 context"

)

441  """Return a hashcode for the `self`. 443  >>> n1 = simplify(Int('x') + 1) 444  >>> n2 = simplify(2 + Int('x') - 1) 445  >>> n1.hash() == n2.hash() 452  """Return `True` if `a` is an AST node. 456  >>> is_ast(IntVal(10)) 460  >>> is_ast(BoolSort()) 462  >>> is_ast(Function('f', IntSort(), IntSort())) 469  return

isinstance(a, AstRef)

473  """Return `True` if `a` and `b` are structurally identical AST nodes. 483  >>> eq(simplify(x + 1), simplify(1 + x)) 487

_z3_assert(

is_ast

(a)

and is_ast

(b),

"Z3 ASTs expected"

)

491 def

_ast_kind(ctx, a):

497 def

_ctx_from_ast_arg_list(args, default_ctx=None):

505

_z3_assert(ctx == a.ctx,

"Context mismatch"

)

511 def

_ctx_from_ast_args(*args):

512  return

_ctx_from_ast_arg_list(args)

515 def

_to_func_decl_array(args):

517

_args = (FuncDecl * sz)()

519

_args[i] = args[i].as_func_decl()

523 def

_to_ast_array(args):

527

_args[i] = args[i].as_ast()

531 def

_to_ref_array(ref, args):

535

_args[i] = args[i].as_ast()

539 def

_to_ast_ref(a, ctx):

540

k = _ast_kind(ctx, a)

542  return

_to_sort_ref(a, ctx)

543  elif

k == Z3_FUNC_DECL_AST:

544  return

_to_func_decl_ref(a, ctx)

546  return

_to_expr_ref(a, ctx)

555 def

_sort_kind(ctx, s):

560  """A Sort is essentially a type. Every Z3 expression has a sort. A sort is an AST node.""" 569  """Return the Z3 internal kind of a sort. 570  This method can be used to test if `self` is one of the Z3 builtin sorts. 573  >>> b.kind() == Z3_BOOL_SORT 575  >>> b.kind() == Z3_INT_SORT 577  >>> A = ArraySort(IntSort(), IntSort()) 578  >>> A.kind() == Z3_ARRAY_SORT 580  >>> A.kind() == Z3_INT_SORT 583  return

_sort_kind(self.

ctx

ctx, self.

ast

ast)

586  """Return `True` if `self` is a subsort of `other`. 588  >>> IntSort().subsort(RealSort()) 594  """Try to cast `val` as an element of sort `self`. 596  This method is used in Z3Py to convert Python objects such as integers, 597  floats, longs and strings into Z3 expressions. 600  >>> RealSort().cast(x) 604

_z3_assert(

is_expr

(val),

"Z3 expression expected"

)

605

_z3_assert(self.

eq

eq(val.sort()),

"Sort mismatch"

)

609  """Return the name (string) of sort `self`. 611  >>> BoolSort().name() 613  >>> ArraySort(IntSort(), IntSort()).name() 619  """Return `True` if `self` and `other` are the same Z3 sort. 622  >>> p.sort() == BoolSort() 624  >>> p.sort() == IntSort() 632  """Return `True` if `self` and `other` are not the same Z3 sort. 635  >>> p.sort() != BoolSort() 637  >>> p.sort() != IntSort() 644  return

AstRef.__hash__(self)

648  """Return `True` if `s` is a Z3 sort. 650  >>> is_sort(IntSort()) 652  >>> is_sort(Int('x')) 654  >>> is_expr(Int('x')) 657  return

isinstance(s, SortRef)

660 def

_to_sort_ref(s, ctx):

662

_z3_assert(isinstance(s, Sort),

"Z3 Sort expected"

)

663

k = _sort_kind(ctx, s)

664  if

k == Z3_BOOL_SORT:

666  elif

k == Z3_INT_SORT

or

k == Z3_REAL_SORT:

668  elif

k == Z3_BV_SORT:

670  elif

k == Z3_ARRAY_SORT:

672  elif

k == Z3_DATATYPE_SORT:

674  elif

k == Z3_FINITE_DOMAIN_SORT:

676  elif

k == Z3_FLOATING_POINT_SORT:

678  elif

k == Z3_ROUNDING_MODE_SORT:

680  elif

k == Z3_RE_SORT:

682  elif

k == Z3_SEQ_SORT:

684  elif

k == Z3_CHAR_SORT:

686  elif

k == Z3_TYPE_VAR:

692  return

_to_sort_ref(

Z3_get_sort

(ctx.ref(), a), ctx)

696  """Create a new uninterpreted sort named `name`. 698  If `ctx=None`, then the new sort is declared in the global Z3Py context. 700  >>> A = DeclareSort('A') 701  >>> a = Const('a', A) 702  >>> b = Const('b', A) 714  """Type variable reference""" 724  """Create a new type variable named `name`. 726  If `ctx=None`, then the new sort is declared in the global Z3Py context. 741  """Function declaration. Every constant and function have an associated declaration. 743  The declaration assigns a name, a sort (i.e., type), and for function 744  the sort (i.e., type) of each of its arguments. Note that, in Z3, 745  a constant is a function with 0 arguments. 758  """Return the name of the function declaration `self`. 760  >>> f = Function('f', IntSort(), IntSort()) 763  >>> isinstance(f.name(), str) 769  """Return the number of arguments of a function declaration. 770  If `self` is a constant, then `self.arity()` is 0. 772  >>> f = Function('f', IntSort(), RealSort(), BoolSort()) 779  """Return the sort of the argument `i` of a function declaration. 780  This method assumes that `0 <= i < self.arity()`. 782  >>> f = Function('f', IntSort(), RealSort(), BoolSort()) 791  """Return the sort of the range of a function declaration. 792  For constants, this is the sort of the constant. 794  >>> f = Function('f', IntSort(), RealSort(), BoolSort()) 801  """Return the internal kind of a function declaration. 802  It can be used to identify Z3 built-in functions such as addition, multiplication, etc. 805  >>> d = (x + 1).decl() 806  >>> d.kind() == Z3_OP_ADD 808  >>> d.kind() == Z3_OP_MUL 816

result = [

None for

i

in range

(n)]

819  if

k == Z3_PARAMETER_INT:

821  elif

k == Z3_PARAMETER_DOUBLE:

823  elif

k == Z3_PARAMETER_RATIONAL:

825  elif

k == Z3_PARAMETER_SYMBOL:

827  elif

k == Z3_PARAMETER_SORT:

829  elif

k == Z3_PARAMETER_AST:

831  elif

k == Z3_PARAMETER_FUNC_DECL:

838  """Create a Z3 application expression using the function `self`, and the given arguments. 840  The arguments must be Z3 expressions. This method assumes that 841  the sorts of the elements in `args` match the sorts of the 842  domain. Limited coercion is supported. For example, if 843  args[0] is a Python integer, and the function expects a Z3 844  integer, then the argument is automatically converted into a 847  >>> f = Function('f', IntSort(), RealSort(), BoolSort()) 855

args = _get_args(args)

857

_args = (Ast * num)()

859  for

i

in range

(num):

862

tmp = self.

domain

domain(i).cast(args[i])

864

_args[i] = tmp.as_ast()

869  """Return `True` if `a` is a Z3 function declaration. 871  >>> f = Function('f', IntSort(), IntSort()) 878  return

isinstance(a, FuncDeclRef)

882  """Create a new Z3 uninterpreted function with the given sorts. 884  >>> f = Function('f', IntSort(), IntSort()) 890

_z3_assert(len(sig) > 0,

"At least two arguments expected"

)

894

_z3_assert(

is_sort

(rng),

"Z3 sort expected"

)

895

dom = (Sort * arity)()

896  for

i

in range

(arity):

898

_z3_assert(

is_sort

(sig[i]),

"Z3 sort expected"

)

905  """Create a new fresh Z3 uninterpreted function with the given sorts. 909

_z3_assert(len(sig) > 0,

"At least two arguments expected"

)

913

_z3_assert(

is_sort

(rng),

"Z3 sort expected"

)

914

dom = (z3.Sort * arity)()

915  for

i

in range

(arity):

917

_z3_assert(

is_sort

(sig[i]),

"Z3 sort expected"

)

923 def

_to_func_decl_ref(a, ctx):

928  """Create a new Z3 recursive with the given sorts.""" 931

_z3_assert(len(sig) > 0,

"At least two arguments expected"

)

935

_z3_assert(

is_sort

(rng),

"Z3 sort expected"

)

936

dom = (Sort * arity)()

937  for

i

in range

(arity):

939

_z3_assert(

is_sort

(sig[i]),

"Z3 sort expected"

)

946  """Set the body of a recursive function. 947  Recursive definitions can be simplified if they are applied to ground 950  >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx)) 951  >>> n = Int('n', ctx) 952  >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1))) 955  >>> s = Solver(ctx=ctx) 956  >>> s.add(fac(n) < 3) 959  >>> s.model().eval(fac(5)) 965

args = _get_args(args)

969

_args[i] = args[i].ast

980  """Constraints, formulas and terms are expressions in Z3. 982  Expressions are ASTs. Every expression has a sort. 983  There are three main kinds of expressions: 984  function applications, quantifiers and bounded variables. 985  A constant is a function application with 0 arguments. 986  For quantifier free problems, all expressions are 987  function applications. 997  """Return the sort of expression `self`. 1009  """Shorthand for `self.sort().kind()`. 1011  >>> a = Array('a', IntSort(), IntSort()) 1012  >>> a.sort_kind() == Z3_ARRAY_SORT 1014  >>> a.sort_kind() == Z3_INT_SORT 1017  return

self.

sort

sort().kind()

1020  """Return a Z3 expression that represents the constraint `self == other`. 1022  If `other` is `None`, then this method simply returns `False`. 1033

a, b = _coerce_exprs(self, other)

1038  return

AstRef.__hash__(self)

1041  """Return a Z3 expression that represents the constraint `self != other`. 1043  If `other` is `None`, then this method simply returns `True`. 1054

a, b = _coerce_exprs(self, other)

1055

_args, sz = _to_ast_array((a, b))

1062  """Return the Z3 function declaration associated with a Z3 application. 1064  >>> f = Function('f', IntSort(), IntSort()) 1073

_z3_assert(

is_app

(self),

"Z3 application expected"

)

1077  """Return the number of arguments of a Z3 application. 1081  >>> (a + b).num_args() 1083  >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort()) 1089

_z3_assert(

is_app

(self),

"Z3 application expected"

)

1093  """Return argument `idx` of the application `self`. 1095  This method assumes that `self` is a function application with at least `idx+1` arguments. 1099  >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort()) 1109

_z3_assert(

is_app

(self),

"Z3 application expected"

)

1110

_z3_assert(idx < self.

num_args

num_args(),

"Invalid argument index"

)

1114  """Return a list containing the children of the given expression 1118  >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort()) 1138  """inverse function to the serialize method on ExprRef. 1139  It is made available to make it easier for users to serialize expressions back and forth between 1140  strings. Solvers can be serialized using the 'sexpr()' method. 1144  if

len(s.assertions()) != 1:

1145  raise

Z3Exception(

"single assertion expected"

)

1146

fml = s.assertions()[0]

1147  if

fml.num_args() != 1:

1148  raise

Z3Exception(

"dummy function 'F' expected"

)

1151 def

_to_expr_ref(a, ctx):

1152  if

isinstance(a, Pattern):

1156  if

k == Z3_QUANTIFIER_AST:

1159  if

sk == Z3_BOOL_SORT:

1161  if

sk == Z3_INT_SORT:

1162  if

k == Z3_NUMERAL_AST:

1165  if

sk == Z3_REAL_SORT:

1166  if

k == Z3_NUMERAL_AST:

1168  if

_is_algebraic(ctx, a):

1171  if

sk == Z3_BV_SORT:

1172  if

k == Z3_NUMERAL_AST:

1176  if

sk == Z3_ARRAY_SORT:

1178  if

sk == Z3_DATATYPE_SORT:

1180  if

sk == Z3_FLOATING_POINT_SORT:

1181  if

k == Z3_APP_AST

and

_is_numeral(ctx, a):

1184  return FPRef

(a, ctx)

1185  if

sk == Z3_FINITE_DOMAIN_SORT:

1186  if

k == Z3_NUMERAL_AST:

1190  if

sk == Z3_ROUNDING_MODE_SORT:

1192  if

sk == Z3_SEQ_SORT:

1194  if

sk == Z3_CHAR_SORT:

1196  if

sk == Z3_RE_SORT:

1197  return ReRef

(a, ctx)

1201 def

_coerce_expr_merge(s, a):

1214

_z3_assert(s1.ctx == s.ctx,

"context mismatch"

)

1215

_z3_assert(

False

,

"sort mismatch"

)

1220 def

_coerce_exprs(a, b, ctx=None):

1222

a = _py2expr(a, ctx)

1223

b = _py2expr(b, ctx)

1224  if

isinstance(a, str)

and

isinstance(b, SeqRef):

1226  if

isinstance(b, str)

and

isinstance(a, SeqRef):

1228  if

isinstance(a, float)

and

isinstance(b, ArithRef):

1230  if

isinstance(b, float)

and

isinstance(a, ArithRef):

1234

s = _coerce_expr_merge(s, a)

1235

s = _coerce_expr_merge(s, b)

1241 def

_reduce(func, sequence, initial):

1243  for

element

in

sequence:

1244

result = func(result, element)

1248 def

_coerce_expr_list(alist, ctx=None):

1255

alist = [_py2expr(a, ctx)

for

a

in

alist]

1256

s = _reduce(_coerce_expr_merge, alist,

None

)

1257  return

[s.cast(a)

for

a

in

alist]

1261  """Return `True` if `a` is a Z3 expression. 1268  >>> is_expr(IntSort()) 1272  >>> is_expr(IntVal(1)) 1275  >>> is_expr(ForAll(x, x >= 0)) 1277  >>> is_expr(FPVal(1.0)) 1280  return

isinstance(a, ExprRef)

1284  """Return `True` if `a` is a Z3 function application. 1286  Note that, constants are function applications with 0 arguments. 1293  >>> is_app(IntSort()) 1297  >>> is_app(IntVal(1)) 1300  >>> is_app(ForAll(x, x >= 0)) 1303  if not

isinstance(a, ExprRef):

1305

k = _ast_kind(a.ctx, a)

1306  return

k == Z3_NUMERAL_AST

or

k == Z3_APP_AST

1310  """Return `True` if `a` is Z3 constant/variable expression. 1319  >>> is_const(IntVal(1)) 1322  >>> is_const(ForAll(x, x >= 0)) 1325  return is_app

(a)

and

a.num_args() == 0

1329  """Return `True` if `a` is variable. 1331  Z3 uses de-Bruijn indices for representing bound variables in 1339  >>> f = Function('f', IntSort(), IntSort()) 1340  >>> # Z3 replaces x with bound variables when ForAll is executed. 1341  >>> q = ForAll(x, f(x) == x) 1347  >>> is_var(b.arg(1)) 1350  return is_expr

(a)

and

_ast_kind(a.ctx, a) == Z3_VAR_AST

1354  """Return the de-Bruijn index of the Z3 bounded variable `a`. 1362  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 1363  >>> # Z3 replaces x and y with bound variables when ForAll is executed. 1364  >>> q = ForAll([x, y], f(x, y) == x + y) 1366  f(Var(1), Var(0)) == Var(1) + Var(0) 1370  >>> v1 = b.arg(0).arg(0) 1371  >>> v2 = b.arg(0).arg(1) 1376  >>> get_var_index(v1) 1378  >>> get_var_index(v2) 1382

_z3_assert(

is_var

(a),

"Z3 bound variable expected"

)

1387  """Return `True` if `a` is an application of the given kind `k`. 1391  >>> is_app_of(n, Z3_OP_ADD) 1393  >>> is_app_of(n, Z3_OP_MUL) 1396  return is_app

(a)

and

a.decl().kind() == k

1399 def If

(a, b, c, ctx=None):

1400  """Create a Z3 if-then-else expression. 1404  >>> max = If(x > y, x, y) 1410  if

isinstance(a, Probe)

or

isinstance(b, Tactic)

or

isinstance(c, Tactic):

1411  return Cond

(a, b, c, ctx)

1413

ctx = _get_ctx(_ctx_from_ast_arg_list([a, b, c], ctx))

1416

b, c = _coerce_exprs(b, c, ctx)

1418

_z3_assert(a.ctx == b.ctx,

"Context mismatch"

)

1419  return

_to_expr_ref(

Z3_mk_ite

(ctx.ref(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)

1423  """Create a Z3 distinct expression. 1430  >>> Distinct(x, y, z) 1432  >>> simplify(Distinct(x, y, z)) 1434  >>> simplify(Distinct(x, y, z), blast_distinct=True) 1435  And(Not(x == y), Not(x == z), Not(y == z)) 1437

args = _get_args(args)

1438

ctx = _ctx_from_ast_arg_list(args)

1440

_z3_assert(ctx

is not None

,

"At least one of the arguments must be a Z3 expression"

)

1441

args = _coerce_expr_list(args, ctx)

1442

_args, sz = _to_ast_array(args)

1446 def

_mk_bin(f, a, b):

1449

_z3_assert(a.ctx == b.ctx,

"Context mismatch"

)

1450

args[0] = a.as_ast()

1451

args[1] = b.as_ast()

1452  return

f(a.ctx.ref(), 2, args)

1456  """Create a constant of the given sort. 1458  >>> Const('x', IntSort()) 1462

_z3_assert(isinstance(sort, SortRef),

"Z3 sort expected"

)

1468  """Create several constants of the given sort. 1470  `names` is a string containing the names of all constants to be created. 1471  Blank spaces separate the names of different constants. 1473  >>> x, y, z = Consts('x y z', IntSort()) 1477  if

isinstance(names, str):

1478

names = names.split(

" "

)

1479  return

[

Const

(name, sort)

for

name

in

names]

1483  """Create a fresh constant of a specified sort""" 1484

ctx = _get_ctx(sort.ctx)

1489  """Create a Z3 free variable. Free variables are used to create quantified formulas. 1490  A free variable with index n is bound when it occurs within the scope of n+1 quantified 1493  >>> Var(0, IntSort()) 1495  >>> eq(Var(0, IntSort()), Var(0, BoolSort())) 1499

_z3_assert(

is_sort

(s),

"Z3 sort expected"

)

1500  return

_to_expr_ref(

Z3_mk_bound

(s.ctx_ref(), idx, s.ast), s.ctx)

1505  Create a real free variable. Free variables are used to create quantified formulas. 1506  They are also used to create polynomials. 1516  Create a list of Real free variables. 1517  The variables have ids: 0, 1, ..., n-1 1519  >>> x0, x1, x2, x3 = RealVarVector(4) 1536  """Try to cast `val` as a Boolean. 1538  >>> x = BoolSort().cast(True) 1548  if

isinstance(val, bool):

1552

msg =

"True, False or Z3 Boolean expression expected. Received %s of type %s" 1553

_z3_assert(

is_expr

(val), msg % (val, type(val)))

1554  if not

self.

eq

eq(val.sort()):

1555

_z3_assert(self.

eq

eq(val.sort()),

"Value cannot be converted into a Z3 Boolean value"

)

1559  return

isinstance(other, ArithSortRef)

1569  """All Boolean expressions are instances of this class.""" 1575  if

isinstance(other, BoolRef):

1576

other =

If

(other, 1, 0)

1577  return If

(self, 1, 0) + other

1586  """Create the Z3 expression `self * other`. 1588  if

isinstance(other, int)

and

other == 1:

1589  return If

(self, 1, 0)

1590  if

isinstance(other, int)

and

other == 0:

1592  if

isinstance(other, BoolRef):

1593

other =

If

(other, 1, 0)

1594  return If

(self, other, 0)

1597  return And

(self, other)

1600  return Or

(self, other)

1603  return Xor

(self, other)

1612  """Return `True` if `a` is a Z3 Boolean expression. 1618  >>> is_bool(And(p, q)) 1626  return

isinstance(a, BoolRef)

1630  """Return `True` if `a` is the Z3 true expression. 1635  >>> is_true(simplify(p == p)) 1640  >>> # True is a Python Boolean expression 1648  """Return `True` if `a` is the Z3 false expression. 1655  >>> is_false(BoolVal(False)) 1662  """Return `True` if `a` is a Z3 and expression. 1664  >>> p, q = Bools('p q') 1665  >>> is_and(And(p, q)) 1667  >>> is_and(Or(p, q)) 1674  """Return `True` if `a` is a Z3 or expression. 1676  >>> p, q = Bools('p q') 1679  >>> is_or(And(p, q)) 1686  """Return `True` if `a` is a Z3 implication expression. 1688  >>> p, q = Bools('p q') 1689  >>> is_implies(Implies(p, q)) 1691  >>> is_implies(And(p, q)) 1698  """Return `True` if `a` is a Z3 not expression. 1710  """Return `True` if `a` is a Z3 equality expression. 1712  >>> x, y = Ints('x y') 1720  """Return `True` if `a` is a Z3 distinct expression. 1722  >>> x, y, z = Ints('x y z') 1723  >>> is_distinct(x == y) 1725  >>> is_distinct(Distinct(x, y, z)) 1732  """Return the Boolean Z3 sort. If `ctx=None`, then the global context is used. 1736  >>> p = Const('p', BoolSort()) 1739  >>> r = Function('r', IntSort(), IntSort(), BoolSort()) 1742  >>> is_bool(r(0, 1)) 1750  """Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used. 1754  >>> is_true(BoolVal(True)) 1758  >>> is_false(BoolVal(False)) 1769  """Return a Boolean constant named `name`. If `ctx=None`, then the global context is used. 1781  """Return a tuple of Boolean constants. 1783  `names` is a single string containing all names separated by blank spaces. 1784  If `ctx=None`, then the global context is used. 1786  >>> p, q, r = Bools('p q r') 1787  >>> And(p, Or(q, r)) 1791  if

isinstance(names, str):

1792

names = names.split(

" "

)

1793  return

[

Bool

(name, ctx)

for

name

in

names]

1797  """Return a list of Boolean constants of size `sz`. 1799  The constants are named using the given prefix. 1800  If `ctx=None`, then the global context is used. 1802  >>> P = BoolVector('p', 3) 1806  And(p__0, p__1, p__2) 1808  return

[

Bool

(

"%s__%s"

% (prefix, i))

for

i

in range

(sz)]

1812  """Return a fresh Boolean constant in the given context using the given prefix. 1814  If `ctx=None`, then the global context is used. 1816  >>> b1 = FreshBool() 1817  >>> b2 = FreshBool() 1826  """Create a Z3 implies expression. 1828  >>> p, q = Bools('p q') 1832

ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))

1840  """Create a Z3 Xor expression. 1842  >>> p, q = Bools('p q') 1845  >>> simplify(Xor(p, q)) 1848

ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))

1856  """Create a Z3 not expression or probe. 1861  >>> simplify(Not(Not(p))) 1864

ctx = _get_ctx(_ctx_from_ast_arg_list([a], ctx))

1881 def

_has_probe(args):

1882  """Return `True` if one of the elements of the given collection is a Z3 probe.""" 1890  """Create a Z3 and-expression or and-probe. 1892  >>> p, q, r = Bools('p q r') 1895  >>> P = BoolVector('p', 5) 1897  And(p__0, p__1, p__2, p__3, p__4) 1901

last_arg = args[len(args) - 1]

1902  if

isinstance(last_arg, Context):

1903

ctx = args[len(args) - 1]

1904

args = args[:len(args) - 1]

1905  elif

len(args) == 1

and

isinstance(args[0], AstVector):

1907

args = [a

for

a

in

args[0]]

1910

args = _get_args(args)

1911

ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))

1913

_z3_assert(ctx

is not None

,

"At least one of the arguments must be a Z3 expression or probe"

)

1914  if

_has_probe(args):

1915  return

_probe_and(args, ctx)

1917

args = _coerce_expr_list(args, ctx)

1918

_args, sz = _to_ast_array(args)

1923  """Create a Z3 or-expression or or-probe. 1925  >>> p, q, r = Bools('p q r') 1928  >>> P = BoolVector('p', 5) 1930  Or(p__0, p__1, p__2, p__3, p__4) 1934

last_arg = args[len(args) - 1]

1935  if

isinstance(last_arg, Context):

1936

ctx = args[len(args) - 1]

1937

args = args[:len(args) - 1]

1938  elif

len(args) == 1

and

isinstance(args[0], AstVector):

1940

args = [a

for

a

in

args[0]]

1943

args = _get_args(args)

1944

ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))

1946

_z3_assert(ctx

is not None

,

"At least one of the arguments must be a Z3 expression or probe"

)

1947  if

_has_probe(args):

1948  return

_probe_or(args, ctx)

1950

args = _coerce_expr_list(args, ctx)

1951

_args, sz = _to_ast_array(args)

1962  """Patterns are hints for quantifier instantiation. 1974  """Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation. 1976  >>> f = Function('f', IntSort(), IntSort()) 1978  >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ]) 1980  ForAll(x, f(x) == 0) 1981  >>> q.num_patterns() 1983  >>> is_pattern(q.pattern(0)) 1988  return

isinstance(a, PatternRef)

1992  """Create a Z3 multi-pattern using the given expressions `*args` 1994  >>> f = Function('f', IntSort(), IntSort()) 1995  >>> g = Function('g', IntSort(), IntSort()) 1997  >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ]) 1999  ForAll(x, f(x) != g(x)) 2000  >>> q.num_patterns() 2002  >>> is_pattern(q.pattern(0)) 2005  MultiPattern(f(Var(0)), g(Var(0))) 2008

_z3_assert(len(args) > 0,

"At least one argument expected"

)

2009

_z3_assert(all([

is_expr

(a)

for

a

in

args]),

"Z3 expressions expected"

)

2011

args, sz = _to_ast_array(args)

2015 def

_to_pattern(arg):

2029  """Universally and Existentially quantified formulas.""" 2032  return

self.

ast

ast

2038  """Return the Boolean sort or sort of Lambda.""" 2044  """Return `True` if `self` is a universal quantifier. 2046  >>> f = Function('f', IntSort(), IntSort()) 2048  >>> q = ForAll(x, f(x) == 0) 2051  >>> q = Exists(x, f(x) != 0) 2058  """Return `True` if `self` is an existential quantifier. 2060  >>> f = Function('f', IntSort(), IntSort()) 2062  >>> q = ForAll(x, f(x) == 0) 2065  >>> q = Exists(x, f(x) != 0) 2072  """Return `True` if `self` is a lambda expression. 2074  >>> f = Function('f', IntSort(), IntSort()) 2076  >>> q = Lambda(x, f(x)) 2079  >>> q = Exists(x, f(x) != 0) 2086  """Return the Z3 expression `self[arg]`. 2089

_z3_assert(self.

is_lambda

is_lambda(),

"quantifier should be a lambda expression"

)

2090  return

_array_select(self, arg)

2093  """Return the weight annotation of `self`. 2095  >>> f = Function('f', IntSort(), IntSort()) 2097  >>> q = ForAll(x, f(x) == 0) 2100  >>> q = ForAll(x, f(x) == 0, weight=10) 2107  """Return the skolem id of `self`. 2112  """Return the quantifier id of `self`. 2117  """Return the number of patterns (i.e., quantifier instantiation hints) in `self`. 2119  >>> f = Function('f', IntSort(), IntSort()) 2120  >>> g = Function('g', IntSort(), IntSort()) 2122  >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ]) 2123  >>> q.num_patterns() 2129  """Return a pattern (i.e., quantifier instantiation hints) in `self`. 2131  >>> f = Function('f', IntSort(), IntSort()) 2132  >>> g = Function('g', IntSort(), IntSort()) 2134  >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ]) 2135  >>> q.num_patterns() 2143

_z3_assert(idx < self.

num_patterns

num_patterns(),

"Invalid pattern idx"

)

2147  """Return the number of no-patterns.""" 2151  """Return a no-pattern.""" 2153

_z3_assert(idx < self.

num_no_patterns

num_no_patterns(),

"Invalid no-pattern idx"

)

2157  """Return the expression being quantified. 2159  >>> f = Function('f', IntSort(), IntSort()) 2161  >>> q = ForAll(x, f(x) == 0) 2168  """Return the number of variables bounded by this quantifier. 2170  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2173  >>> q = ForAll([x, y], f(x, y) >= x) 2180  """Return a string representing a name used when displaying the quantifier. 2182  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2185  >>> q = ForAll([x, y], f(x, y) >= x) 2192

_z3_assert(idx < self.

num_vars

num_vars(),

"Invalid variable idx"

)

2196  """Return the sort of a bound variable. 2198  >>> f = Function('f', IntSort(), RealSort(), IntSort()) 2201  >>> q = ForAll([x, y], f(x, y) >= x) 2208

_z3_assert(idx < self.

num_vars

num_vars(),

"Invalid variable idx"

)

2212  """Return a list containing a single element self.body() 2214  >>> f = Function('f', IntSort(), IntSort()) 2216  >>> q = ForAll(x, f(x) == 0) 2220  return

[self.

body

body()]

2224  """Return `True` if `a` is a Z3 quantifier. 2226  >>> f = Function('f', IntSort(), IntSort()) 2228  >>> q = ForAll(x, f(x) == 0) 2229  >>> is_quantifier(q) 2231  >>> is_quantifier(f(x)) 2234  return

isinstance(a, QuantifierRef)

2237 def

_mk_quantifier(is_forall, vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):

2239

_z3_assert(

is_bool

(body)

or is_app

(vs)

or

(len(vs) > 0

and is_app

(vs[0])),

"Z3 expression expected"

)

2240

_z3_assert(

is_const

(vs)

or

(len(vs) > 0

and

all([

is_const

(v)

for

v

in

vs])),

"Invalid bounded variable(s)"

)

2241

_z3_assert(all([

is_pattern

(a)

or is_expr

(a)

for

a

in

patterns]),

"Z3 patterns expected"

)

2242

_z3_assert(all([

is_expr

(p)

for

p

in

no_patterns]),

"no patterns are Z3 expressions"

)

2253

_vs = (Ast * num_vars)()

2254  for

i

in range

(num_vars):

2256

_vs[i] = vs[i].as_ast()

2257

patterns = [_to_pattern(p)

for

p

in

patterns]

2258

num_pats = len(patterns)

2259

_pats = (Pattern * num_pats)()

2260  for

i

in range

(num_pats):

2261

_pats[i] = patterns[i].ast

2262

_no_pats, num_no_pats = _to_ast_array(no_patterns)

2268

num_no_pats, _no_pats,

2269

body.as_ast()), ctx)

2272 def ForAll

(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):

2273  """Create a Z3 forall formula. 2275  The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations. 2277  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2280  >>> ForAll([x, y], f(x, y) >= x) 2281  ForAll([x, y], f(x, y) >= x) 2282  >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ]) 2283  ForAll([x, y], f(x, y) >= x) 2284  >>> ForAll([x, y], f(x, y) >= x, weight=10) 2285  ForAll([x, y], f(x, y) >= x) 2287  return

_mk_quantifier(

True

, vs, body, weight, qid, skid, patterns, no_patterns)

2290 def Exists

(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):

2291  """Create a Z3 exists formula. 2293  The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations. 2296  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2299  >>> q = Exists([x, y], f(x, y) >= x, skid="foo") 2301  Exists([x, y], f(x, y) >= x) 2302  >>> is_quantifier(q) 2304  >>> r = Tactic('nnf')(q).as_expr() 2305  >>> is_quantifier(r) 2308  return

_mk_quantifier(

False

, vs, body, weight, qid, skid, patterns, no_patterns)

2312  """Create a Z3 lambda expression. 2314  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2315  >>> mem0 = Array('mem0', IntSort(), IntSort()) 2316  >>> lo, hi, e, i = Ints('lo hi e i') 2317  >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i])) 2319  Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i])) 2325

_vs = (Ast * num_vars)()

2326  for

i

in range

(num_vars):

2328

_vs[i] = vs[i].as_ast()

2339  """Real and Integer sorts.""" 2342  """Return `True` if `self` is of the sort Real. 2347  >>> (x + 1).is_real() 2353  return

self.

kind

kind() == Z3_REAL_SORT

2356  """Return `True` if `self` is of the sort Integer. 2361  >>> (x + 1).is_int() 2367  return

self.

kind

kind() == Z3_INT_SORT

2373  """Return `True` if `self` is a subsort of `other`.""" 2377  """Try to cast `val` as an Integer or Real. 2379  >>> IntSort().cast(10) 2381  >>> is_int(IntSort().cast(10)) 2385  >>> RealSort().cast(10) 2387  >>> is_real(RealSort().cast(10)) 2392

_z3_assert(self.

ctxctx

ctx == val.ctx,

"Context mismatch"

)

2394  if

self.

eq

eq(val_s):

2396  if

val_s.is_int()

and

self.

is_real

is_real():

2398  if

val_s.is_bool()

and

self.

is_int

is_int():

2399  return If

(val, 1, 0)

2400  if

val_s.is_bool()

and

self.

is_real

is_real():

2403

_z3_assert(

False

,

"Z3 Integer/Real expression expected"

)

2405  if

self.

is_int

is_int():

2410

msg =

"int, long, float, string (numeral), or Z3 Integer/Real expression expected. Got %s" 2411

_z3_assert(

False

, msg % self)

2415  """Return `True` if s is an arithmetical sort (type). 2417  >>> is_arith_sort(IntSort()) 2419  >>> is_arith_sort(RealSort()) 2421  >>> is_arith_sort(BoolSort()) 2423  >>> n = Int('x') + 1 2424  >>> is_arith_sort(n.sort()) 2427  return

isinstance(s, ArithSortRef)

2431  """Integer and Real expressions.""" 2434  """Return the sort (type) of the arithmetical expression `self`. 2438  >>> (Real('x') + 1).sort() 2444  """Return `True` if `self` is an integer expression. 2449  >>> (x + 1).is_int() 2452  >>> (x + y).is_int() 2458  """Return `True` if `self` is an real expression. 2463  >>> (x + 1).is_real() 2469  """Create the Z3 expression `self + other`. 2478

a, b = _coerce_exprs(self, other)

2479  return ArithRef

(_mk_bin(Z3_mk_add, a, b), self.

ctx

ctx)

2482  """Create the Z3 expression `other + self`. 2488

a, b = _coerce_exprs(self, other)

2489  return ArithRef

(_mk_bin(Z3_mk_add, b, a), self.

ctx

ctx)

2492  """Create the Z3 expression `self * other`. 2501  if

isinstance(other, BoolRef):

2502  return If

(other, self, 0)

2503

a, b = _coerce_exprs(self, other)

2504  return ArithRef

(_mk_bin(Z3_mk_mul, a, b), self.

ctx

ctx)

2507  """Create the Z3 expression `other * self`. 2513

a, b = _coerce_exprs(self, other)

2514  return ArithRef

(_mk_bin(Z3_mk_mul, b, a), self.

ctx

ctx)

2517  """Create the Z3 expression `self - other`. 2526

a, b = _coerce_exprs(self, other)

2527  return ArithRef

(_mk_bin(Z3_mk_sub, a, b), self.

ctx

ctx)

2530  """Create the Z3 expression `other - self`. 2536

a, b = _coerce_exprs(self, other)

2537  return ArithRef

(_mk_bin(Z3_mk_sub, b, a), self.

ctx

ctx)

2540  """Create the Z3 expression `self**other` (** is the power operator). 2547  >>> simplify(IntVal(2)**8) 2550

a, b = _coerce_exprs(self, other)

2554  """Create the Z3 expression `other**self` (** is the power operator). 2561  >>> simplify(2**IntVal(8)) 2564

a, b = _coerce_exprs(self, other)

2568  """Create the Z3 expression `other/self`. 2587

a, b = _coerce_exprs(self, other)

2591  """Create the Z3 expression `other/self`.""" 2592  return

self.

__div__

__div__(other)

2595  """Create the Z3 expression `other/self`. 2608

a, b = _coerce_exprs(self, other)

2612  """Create the Z3 expression `other/self`.""" 2613  return

self.

__rdiv__

__rdiv__(other)

2616  """Create the Z3 expression `other%self`. 2622  >>> simplify(IntVal(10) % IntVal(3)) 2625

a, b = _coerce_exprs(self, other)

2627

_z3_assert(a.is_int(),

"Z3 integer expression expected"

)

2631  """Create the Z3 expression `other%self`. 2637

a, b = _coerce_exprs(self, other)

2639

_z3_assert(a.is_int(),

"Z3 integer expression expected"

)

2643  """Return an expression representing `-self`. 2663  """Create the Z3 expression `other <= self`. 2665  >>> x, y = Ints('x y') 2672

a, b = _coerce_exprs(self, other)

2676  """Create the Z3 expression `other < self`. 2678  >>> x, y = Ints('x y') 2685

a, b = _coerce_exprs(self, other)

2689  """Create the Z3 expression `other > self`. 2691  >>> x, y = Ints('x y') 2698

a, b = _coerce_exprs(self, other)

2702  """Create the Z3 expression `other >= self`. 2704  >>> x, y = Ints('x y') 2711

a, b = _coerce_exprs(self, other)

2716  """Return `True` if `a` is an arithmetical expression. 2725  >>> is_arith(IntVal(1)) 2733  return

isinstance(a, ArithRef)

2737  """Return `True` if `a` is an integer expression. 2744  >>> is_int(IntVal(1)) 2756  """Return `True` if `a` is a real expression. 2768  >>> is_real(RealVal(1)) 2771  return is_arith

(a)

and

a.is_real()

2774 def

_is_numeral(ctx, a):

2778 def

_is_algebraic(ctx, a):

2783  """Return `True` if `a` is an integer value of sort Int. 2785  >>> is_int_value(IntVal(1)) 2789  >>> is_int_value(Int('x')) 2791  >>> n = Int('x') + 1 2796  >>> is_int_value(n.arg(1)) 2798  >>> is_int_value(RealVal("1/3")) 2800  >>> is_int_value(RealVal(1)) 2803  return is_arith

(a)

and

a.is_int()

and

_is_numeral(a.ctx, a.as_ast())

2807  """Return `True` if `a` is rational value of sort Real. 2809  >>> is_rational_value(RealVal(1)) 2811  >>> is_rational_value(RealVal("3/5")) 2813  >>> is_rational_value(IntVal(1)) 2815  >>> is_rational_value(1) 2817  >>> n = Real('x') + 1 2820  >>> is_rational_value(n.arg(1)) 2822  >>> is_rational_value(Real('x')) 2825  return is_arith

(a)

and

a.is_real()

and

_is_numeral(a.ctx, a.as_ast())

2829  """Return `True` if `a` is an algebraic value of sort Real. 2831  >>> is_algebraic_value(RealVal("3/5")) 2833  >>> n = simplify(Sqrt(2)) 2836  >>> is_algebraic_value(n) 2839  return is_arith

(a)

and

a.is_real()

and

_is_algebraic(a.ctx, a.as_ast())

2843  """Return `True` if `a` is an expression of the form b + c. 2845  >>> x, y = Ints('x y') 2855  """Return `True` if `a` is an expression of the form b * c. 2857  >>> x, y = Ints('x y') 2867  """Return `True` if `a` is an expression of the form b - c. 2869  >>> x, y = Ints('x y') 2879  """Return `True` if `a` is an expression of the form b / c. 2881  >>> x, y = Reals('x y') 2886  >>> x, y = Ints('x y') 2896  """Return `True` if `a` is an expression of the form b div c. 2898  >>> x, y = Ints('x y') 2908  """Return `True` if `a` is an expression of the form b % c. 2910  >>> x, y = Ints('x y') 2920  """Return `True` if `a` is an expression of the form b <= c. 2922  >>> x, y = Ints('x y') 2932  """Return `True` if `a` is an expression of the form b < c. 2934  >>> x, y = Ints('x y') 2944  """Return `True` if `a` is an expression of the form b >= c. 2946  >>> x, y = Ints('x y') 2956  """Return `True` if `a` is an expression of the form b > c. 2958  >>> x, y = Ints('x y') 2968  """Return `True` if `a` is an expression of the form IsInt(b). 2971  >>> is_is_int(IsInt(x)) 2980  """Return `True` if `a` is an expression of the form ToReal(b). 2995  """Return `True` if `a` is an expression of the form ToInt(b). 3010  """Integer values.""" 3013  """Return a Z3 integer numeral as a Python long (bignum) numeral. 3022

_z3_assert(self.

is_int

is_int(),

"Integer value expected"

)

3026  """Return a Z3 integer numeral as a Python string. 3034  """Return a Z3 integer numeral as a Python binary string. 3036  >>> v.as_binary_string() 3043  """Rational values.""" 3046  """ Return the numerator of a Z3 rational numeral. 3048  >>> is_rational_value(RealVal("3/5")) 3050  >>> n = RealVal("3/5") 3053  >>> is_rational_value(Q(3,5)) 3055  >>> Q(3,5).numerator() 3061  """ Return the denominator of a Z3 rational numeral. 3063  >>> is_rational_value(Q(3,5)) 3072  """ Return the numerator as a Python long. 3074  >>> v = RealVal(10000000000) 3079  >>> v.numerator_as_long() + 1 == 10000000001 3085  """ Return the denominator as a Python long. 3087  >>> v = RealVal("1/3") 3090  >>> v.denominator_as_long() 3105

_z3_assert(self.

is_int_value

is_int_value(),

"Expected integer fraction"

)

3109  """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places. 3111  >>> v = RealVal("1/5") 3114  >>> v = RealVal("1/3") 3121  """Return a Z3 rational numeral as a Python string. 3130  """Return a Z3 rational as a Python Fraction object. 3132  >>> v = RealVal("1/5") 3140  """Algebraic irrational values.""" 3143  """Return a Z3 rational number that approximates the algebraic number `self`. 3144  The result `r` is such that |r - self| <= 1/10^precision 3146  >>> x = simplify(Sqrt(2)) 3148  6838717160008073720548335/4835703278458516698824704 3155  """Return a string representation of the algebraic number `self` in decimal notation 3156  using `prec` decimal places. 3158  >>> x = simplify(Sqrt(2)) 3159  >>> x.as_decimal(10) 3161  >>> x.as_decimal(20) 3162  '1.41421356237309504880?' 3173 def

_py2expr(a, ctx=None):

3174  if

isinstance(a, bool):

3178  if

isinstance(a, float):

3180  if

isinstance(a, str):

3185

_z3_assert(

False

,

"Python bool, int, long or float expected"

)

3189  """Return the integer sort in the given context. If `ctx=None`, then the global context is used. 3193  >>> x = Const('x', IntSort()) 3196  >>> x.sort() == IntSort() 3198  >>> x.sort() == BoolSort() 3206  """Return the real sort in the given context. If `ctx=None`, then the global context is used. 3210  >>> x = Const('x', RealSort()) 3215  >>> x.sort() == RealSort() 3222 def

_to_int_str(val):

3223  if

isinstance(val, float):

3224  return

str(int(val))

3225  elif

isinstance(val, bool):

3235  """Return a Z3 integer value. If `ctx=None`, then the global context is used. 3247  """Return a Z3 real value. 3249  `val` may be a Python int, long, float or string representing a number in decimal or rational notation. 3250  If `ctx=None`, then the global context is used. 3254  >>> RealVal(1).sort() 3266  """Return a Z3 rational a/b. 3268  If `ctx=None`, then the global context is used. 3272  >>> RatVal(3,5).sort() 3276

_z3_assert(_is_int(a)

or

isinstance(a, str),

"First argument cannot be converted into an integer"

)

3277

_z3_assert(_is_int(b)

or

isinstance(b, str),

"Second argument cannot be converted into an integer"

)

3281 def Q

(a, b, ctx=None):

3282  """Return a Z3 rational a/b. 3284  If `ctx=None`, then the global context is used. 3295  """Return an integer constant named `name`. If `ctx=None`, then the global context is used. 3308  """Return a tuple of Integer constants. 3310  >>> x, y, z = Ints('x y z') 3315  if

isinstance(names, str):

3316

names = names.split(

" "

)

3317  return

[

Int

(name, ctx)

for

name

in

names]

3321  """Return a list of integer constants of size `sz`. 3323  >>> X = IntVector('x', 3) 3330  return

[

Int

(

"%s__%s"

% (prefix, i), ctx)

for

i

in range

(sz)]

3334  """Return a fresh integer constant in the given context using the given prefix. 3348  """Return a real constant named `name`. If `ctx=None`, then the global context is used. 3361  """Return a tuple of real constants. 3363  >>> x, y, z = Reals('x y z') 3366  >>> Sum(x, y, z).sort() 3370  if

isinstance(names, str):

3371

names = names.split(

" "

)

3372  return

[

Real

(name, ctx)

for

name

in

names]

3376  """Return a list of real constants of size `sz`. 3378  >>> X = RealVector('x', 3) 3387  return

[

Real

(

"%s__%s"

% (prefix, i), ctx)

for

i

in range

(sz)]

3391  """Return a fresh real constant in the given context using the given prefix. 3405  """ Return the Z3 expression ToReal(a). 3417

_z3_assert(a.is_int(),

"Z3 integer expression expected."

)

3423  """ Return the Z3 expression ToInt(a). 3435

_z3_assert(a.is_real(),

"Z3 real expression expected."

)

3441  """ Return the Z3 predicate IsInt(a). 3444  >>> IsInt(x + "1/2") 3446  >>> solve(IsInt(x + "1/2"), x > 0, x < 1) 3448  >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2") 3452

_z3_assert(a.is_real(),

"Z3 real expression expected."

)

3458  """ Return a Z3 expression which represents the square root of a. 3471  """ Return a Z3 expression which represents the cubic root of a. 3490  """Bit-vector sort.""" 3493  """Return the size (number of bits) of the bit-vector sort `self`. 3495  >>> b = BitVecSort(32) 3505  """Try to cast `val` as a Bit-Vector. 3507  >>> b = BitVecSort(32) 3510  >>> b.cast(10).sexpr() 3515

_z3_assert(self.

ctxctx

ctx == val.ctx,

"Context mismatch"

)

3523  """Return True if `s` is a Z3 bit-vector sort. 3525  >>> is_bv_sort(BitVecSort(32)) 3527  >>> is_bv_sort(IntSort()) 3530  return

isinstance(s, BitVecSortRef)

3534  """Bit-vector expressions.""" 3537  """Return the sort of the bit-vector expression `self`. 3539  >>> x = BitVec('x', 32) 3542  >>> x.sort() == BitVecSort(32) 3548  """Return the number of bits of the bit-vector expression `self`. 3550  >>> x = BitVec('x', 32) 3553  >>> Concat(x, x).size() 3559  """Create the Z3 expression `self + other`. 3561  >>> x = BitVec('x', 32) 3562  >>> y = BitVec('y', 32) 3568

a, b = _coerce_exprs(self, other)

3572  """Create the Z3 expression `other + self`. 3574  >>> x = BitVec('x', 32) 3578

a, b = _coerce_exprs(self, other)

3582  """Create the Z3 expression `self * other`. 3584  >>> x = BitVec('x', 32) 3585  >>> y = BitVec('y', 32) 3591

a, b = _coerce_exprs(self, other)

3595  """Create the Z3 expression `other * self`. 3597  >>> x = BitVec('x', 32) 3601

a, b = _coerce_exprs(self, other)

3605  """Create the Z3 expression `self - other`. 3607  >>> x = BitVec('x', 32) 3608  >>> y = BitVec('y', 32) 3614

a, b = _coerce_exprs(self, other)

3618  """Create the Z3 expression `other - self`. 3620  >>> x = BitVec('x', 32) 3624

a, b = _coerce_exprs(self, other)

3628  """Create the Z3 expression bitwise-or `self | other`. 3630  >>> x = BitVec('x', 32) 3631  >>> y = BitVec('y', 32) 3637

a, b = _coerce_exprs(self, other)

3641  """Create the Z3 expression bitwise-or `other | self`. 3643  >>> x = BitVec('x', 32) 3647

a, b = _coerce_exprs(self, other)

3651  """Create the Z3 expression bitwise-and `self & other`. 3653  >>> x = BitVec('x', 32) 3654  >>> y = BitVec('y', 32) 3660

a, b = _coerce_exprs(self, other)

3664  """Create the Z3 expression bitwise-or `other & self`. 3666  >>> x = BitVec('x', 32) 3670

a, b = _coerce_exprs(self, other)

3674  """Create the Z3 expression bitwise-xor `self ^ other`. 3676  >>> x = BitVec('x', 32) 3677  >>> y = BitVec('y', 32) 3683

a, b = _coerce_exprs(self, other)

3687  """Create the Z3 expression bitwise-xor `other ^ self`. 3689  >>> x = BitVec('x', 32) 3693

a, b = _coerce_exprs(self, other)

3699  >>> x = BitVec('x', 32) 3706  """Return an expression representing `-self`. 3708  >>> x = BitVec('x', 32) 3717  """Create the Z3 expression bitwise-not `~self`. 3719  >>> x = BitVec('x', 32) 3728  """Create the Z3 expression (signed) division `self / other`. 3730  Use the function UDiv() for unsigned division. 3732  >>> x = BitVec('x', 32) 3733  >>> y = BitVec('y', 32) 3740  >>> UDiv(x, y).sexpr() 3743

a, b = _coerce_exprs(self, other)

3747  """Create the Z3 expression (signed) division `self / other`.""" 3748  return

self.

__div__

__div__(other)

3751  """Create the Z3 expression (signed) division `other / self`. 3753  Use the function UDiv() for unsigned division. 3755  >>> x = BitVec('x', 32) 3758  >>> (10 / x).sexpr() 3759  '(bvsdiv #x0000000a x)' 3760  >>> UDiv(10, x).sexpr() 3761  '(bvudiv #x0000000a x)' 3763

a, b = _coerce_exprs(self, other)

3767  """Create the Z3 expression (signed) division `other / self`.""" 3768  return

self.

__rdiv__

__rdiv__(other)

3771  """Create the Z3 expression (signed) mod `self % other`. 3773  Use the function URem() for unsigned remainder, and SRem() for signed remainder. 3775  >>> x = BitVec('x', 32) 3776  >>> y = BitVec('y', 32) 3783  >>> URem(x, y).sexpr() 3785  >>> SRem(x, y).sexpr() 3788

a, b = _coerce_exprs(self, other)

3792  """Create the Z3 expression (signed) mod `other % self`. 3794  Use the function URem() for unsigned remainder, and SRem() for signed remainder. 3796  >>> x = BitVec('x', 32) 3799  >>> (10 % x).sexpr() 3800  '(bvsmod #x0000000a x)' 3801  >>> URem(10, x).sexpr() 3802  '(bvurem #x0000000a x)' 3803  >>> SRem(10, x).sexpr() 3804  '(bvsrem #x0000000a x)' 3806

a, b = _coerce_exprs(self, other)

3810  """Create the Z3 expression (signed) `other <= self`. 3812  Use the function ULE() for unsigned less than or equal to. 3814  >>> x, y = BitVecs('x y', 32) 3817  >>> (x <= y).sexpr() 3819  >>> ULE(x, y).sexpr() 3822

a, b = _coerce_exprs(self, other)

3826  """Create the Z3 expression (signed) `other < self`. 3828  Use the function ULT() for unsigned less than. 3830  >>> x, y = BitVecs('x y', 32) 3835  >>> ULT(x, y).sexpr() 3838

a, b = _coerce_exprs(self, other)

3842  """Create the Z3 expression (signed) `other > self`. 3844  Use the function UGT() for unsigned greater than. 3846  >>> x, y = BitVecs('x y', 32) 3851  >>> UGT(x, y).sexpr() 3854

a, b = _coerce_exprs(self, other)

3858  """Create the Z3 expression (signed) `other >= self`. 3860  Use the function UGE() for unsigned greater than or equal to. 3862  >>> x, y = BitVecs('x y', 32) 3865  >>> (x >= y).sexpr() 3867  >>> UGE(x, y).sexpr() 3870

a, b = _coerce_exprs(self, other)

3874  """Create the Z3 expression (arithmetical) right shift `self >> other` 3876  Use the function LShR() for the right logical shift 3878  >>> x, y = BitVecs('x y', 32) 3881  >>> (x >> y).sexpr() 3883  >>> LShR(x, y).sexpr() 3887  >>> BitVecVal(4, 3).as_signed_long() 3889  >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long() 3891  >>> simplify(BitVecVal(4, 3) >> 1) 3893  >>> simplify(LShR(BitVecVal(4, 3), 1)) 3895  >>> simplify(BitVecVal(2, 3) >> 1) 3897  >>> simplify(LShR(BitVecVal(2, 3), 1)) 3900

a, b = _coerce_exprs(self, other)

3904  """Create the Z3 expression left shift `self << other` 3906  >>> x, y = BitVecs('x y', 32) 3909  >>> (x << y).sexpr() 3911  >>> simplify(BitVecVal(2, 3) << 1) 3914

a, b = _coerce_exprs(self, other)

3918  """Create the Z3 expression (arithmetical) right shift `other` >> `self`. 3920  Use the function LShR() for the right logical shift 3922  >>> x = BitVec('x', 32) 3925  >>> (10 >> x).sexpr() 3926  '(bvashr #x0000000a x)' 3928

a, b = _coerce_exprs(self, other)

3932  """Create the Z3 expression left shift `other << self`. 3934  Use the function LShR() for the right logical shift 3936  >>> x = BitVec('x', 32) 3939  >>> (10 << x).sexpr() 3940  '(bvshl #x0000000a x)' 3942

a, b = _coerce_exprs(self, other)

3947  """Bit-vector values.""" 3950  """Return a Z3 bit-vector numeral as a Python long (bignum) numeral. 3952  >>> v = BitVecVal(0xbadc0de, 32) 3955  >>> print("0x%.8x" % v.as_long()) 3961  """Return a Z3 bit-vector numeral as a Python long (bignum) numeral. 3962  The most significant bit is assumed to be the sign. 3964  >>> BitVecVal(4, 3).as_signed_long() 3966  >>> BitVecVal(7, 3).as_signed_long() 3968  >>> BitVecVal(3, 3).as_signed_long() 3970  >>> BitVecVal(2**32 - 1, 32).as_signed_long() 3972  >>> BitVecVal(2**64 - 1, 64).as_signed_long() 3975

sz = self.

size

size()

3977  if

val >= 2**(sz - 1):

3979  if

val < -2**(sz - 1):

3991  """Return `True` if `a` is a Z3 bit-vector expression. 3993  >>> b = BitVec('b', 32) 4001  return

isinstance(a, BitVecRef)

4005  """Return `True` if `a` is a Z3 bit-vector numeral value. 4007  >>> b = BitVec('b', 32) 4010  >>> b = BitVecVal(10, 32) 4016  return is_bv

(a)

and

_is_numeral(a.ctx, a.as_ast())

4020  """Return the Z3 expression BV2Int(a). 4022  >>> b = BitVec('b', 3) 4023  >>> BV2Int(b).sort() 4028  >>> x > BV2Int(b, is_signed=False) 4030  >>> x > BV2Int(b, is_signed=True) 4031  x > If(b < 0, BV2Int(b) - 8, BV2Int(b)) 4032  >>> solve(x > BV2Int(b), b == 1, x < 3) 4036

_z3_assert(

is_bv

(a),

"First argument must be a Z3 bit-vector expression"

)

4043  """Return the z3 expression Int2BV(a, num_bits). 4044  It is a bit-vector of width num_bits and represents the 4045  modulo of a by 2^num_bits 4052  """Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used. 4054  >>> Byte = BitVecSort(8) 4055  >>> Word = BitVecSort(16) 4058  >>> x = Const('x', Byte) 4059  >>> eq(x, BitVec('x', 8)) 4067  """Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used. 4069  >>> v = BitVecVal(10, 32) 4072  >>> print("0x%.8x" % v.as_long()) 4084  """Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort. 4085  If `ctx=None`, then the global context is used. 4087  >>> x = BitVec('x', 16) 4094  >>> word = BitVecSort(16) 4095  >>> x2 = BitVec('x', word) 4099  if

isinstance(bv, BitVecSortRef):

4108  """Return a tuple of bit-vector constants of size bv. 4110  >>> x, y, z = BitVecs('x y z', 16) 4117  >>> Product(x, y, z) 4119  >>> simplify(Product(x, y, z)) 4123  if

isinstance(names, str):

4124

names = names.split(

" "

)

4125  return

[

BitVec

(name, bv, ctx)

for

name

in

names]

4129  """Create a Z3 bit-vector concatenation expression. 4131  >>> v = BitVecVal(1, 4) 4132  >>> Concat(v, v+1, v) 4133  Concat(Concat(1, 1 + 1), 1) 4134  >>> simplify(Concat(v, v+1, v)) 4136  >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long()) 4139

args = _get_args(args)

4142

_z3_assert(sz >= 2,

"At least two arguments expected."

)

4149  if is_seq

(args[0])

or

isinstance(args[0], str):

4150

args = [_coerce_seq(s, ctx)

for

s

in

args]

4152

_z3_assert(all([

is_seq

(a)

for

a

in

args]),

"All arguments must be sequence expressions."

)

4154  for

i

in range

(sz):

4155

v[i] = args[i].as_ast()

4160

_z3_assert(all([

is_re

(a)

for

a

in

args]),

"All arguments must be regular expressions."

)

4162  for

i

in range

(sz):

4163

v[i] = args[i].as_ast()

4167

_z3_assert(all([

is_bv

(a)

for

a

in

args]),

"All arguments must be Z3 bit-vector expressions."

)

4169  for

i

in range

(sz - 1):

4175  """Create a Z3 bit-vector extraction expression. 4176  Extract is overloaded to also work on sequence extraction. 4177  The functions SubString and SubSeq are redirected to Extract. 4178  For this case, the arguments are reinterpreted as: 4179  high - is a sequence (string) 4181  a - is the length to be extracted 4183  >>> x = BitVec('x', 8) 4184  >>> Extract(6, 2, x) 4186  >>> Extract(6, 2, x).sort() 4188  >>> simplify(Extract(StringVal("abcd"),2,1)) 4191  if

isinstance(high, str):

4195

offset, length = _coerce_exprs(low, a, s.ctx)

4198

_z3_assert(low <= high,

"First argument must be greater than or equal to second argument"

)

4199

_z3_assert(_is_int(high)

and

high >= 0

and

_is_int(low)

and

low >= 0,

4200  "First and second arguments must be non negative integers"

)

4201

_z3_assert(

is_bv

(a),

"Third argument must be a Z3 bit-vector expression"

)

4205 def

_check_bv_args(a, b):

4207

_z3_assert(

is_bv

(a)

or is_bv

(b),

"First or second argument must be a Z3 bit-vector expression"

)

4211  """Create the Z3 expression (unsigned) `other <= self`. 4213  Use the operator <= for signed less than or equal to. 4215  >>> x, y = BitVecs('x y', 32) 4218  >>> (x <= y).sexpr() 4220  >>> ULE(x, y).sexpr() 4223

_check_bv_args(a, b)

4224

a, b = _coerce_exprs(a, b)

4229  """Create the Z3 expression (unsigned) `other < self`. 4231  Use the operator < for signed less than. 4233  >>> x, y = BitVecs('x y', 32) 4238  >>> ULT(x, y).sexpr() 4241

_check_bv_args(a, b)

4242

a, b = _coerce_exprs(a, b)

4247  """Create the Z3 expression (unsigned) `other >= self`. 4249  Use the operator >= for signed greater than or equal to. 4251  >>> x, y = BitVecs('x y', 32) 4254  >>> (x >= y).sexpr() 4256  >>> UGE(x, y).sexpr() 4259

_check_bv_args(a, b)

4260

a, b = _coerce_exprs(a, b)

4265  """Create the Z3 expression (unsigned) `other > self`. 4267  Use the operator > for signed greater than. 4269  >>> x, y = BitVecs('x y', 32) 4274  >>> UGT(x, y).sexpr() 4277

_check_bv_args(a, b)

4278

a, b = _coerce_exprs(a, b)

4283  """Create the Z3 expression (unsigned) division `self / other`. 4285  Use the operator / for signed division. 4287  >>> x = BitVec('x', 32) 4288  >>> y = BitVec('y', 32) 4291  >>> UDiv(x, y).sort() 4295  >>> UDiv(x, y).sexpr() 4298

_check_bv_args(a, b)

4299

a, b = _coerce_exprs(a, b)

4304  """Create the Z3 expression (unsigned) remainder `self % other`. 4306  Use the operator % for signed modulus, and SRem() for signed remainder. 4308  >>> x = BitVec('x', 32) 4309  >>> y = BitVec('y', 32) 4312  >>> URem(x, y).sort() 4316  >>> URem(x, y).sexpr() 4319

_check_bv_args(a, b)

4320

a, b = _coerce_exprs(a, b)

4325  """Create the Z3 expression signed remainder. 4327  Use the operator % for signed modulus, and URem() for unsigned remainder. 4329  >>> x = BitVec('x', 32) 4330  >>> y = BitVec('y', 32) 4333  >>> SRem(x, y).sort() 4337  >>> SRem(x, y).sexpr() 4340

_check_bv_args(a, b)

4341

a, b = _coerce_exprs(a, b)

4346  """Create the Z3 expression logical right shift. 4348  Use the operator >> for the arithmetical right shift. 4350  >>> x, y = BitVecs('x y', 32) 4353  >>> (x >> y).sexpr() 4355  >>> LShR(x, y).sexpr() 4359  >>> BitVecVal(4, 3).as_signed_long() 4361  >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long() 4363  >>> simplify(BitVecVal(4, 3) >> 1) 4365  >>> simplify(LShR(BitVecVal(4, 3), 1)) 4367  >>> simplify(BitVecVal(2, 3) >> 1) 4369  >>> simplify(LShR(BitVecVal(2, 3), 1)) 4372

_check_bv_args(a, b)

4373

a, b = _coerce_exprs(a, b)

4378  """Return an expression representing `a` rotated to the left `b` times. 4380  >>> a, b = BitVecs('a b', 16) 4381  >>> RotateLeft(a, b) 4383  >>> simplify(RotateLeft(a, 0)) 4385  >>> simplify(RotateLeft(a, 16)) 4388

_check_bv_args(a, b)

4389

a, b = _coerce_exprs(a, b)

4394  """Return an expression representing `a` rotated to the right `b` times. 4396  >>> a, b = BitVecs('a b', 16) 4397  >>> RotateRight(a, b) 4399  >>> simplify(RotateRight(a, 0)) 4401  >>> simplify(RotateRight(a, 16)) 4404

_check_bv_args(a, b)

4405

a, b = _coerce_exprs(a, b)

4410  """Return a bit-vector expression with `n` extra sign-bits. 4412  >>> x = BitVec('x', 16) 4413  >>> n = SignExt(8, x) 4420  >>> v0 = BitVecVal(2, 2) 4425  >>> v = simplify(SignExt(6, v0)) 4430  >>> print("%.x" % v.as_long()) 4434

_z3_assert(_is_int(n),

"First argument must be an integer"

)

4435

_z3_assert(

is_bv

(a),

"Second argument must be a Z3 bit-vector expression"

)

4440  """Return a bit-vector expression with `n` extra zero-bits. 4442  >>> x = BitVec('x', 16) 4443  >>> n = ZeroExt(8, x) 4450  >>> v0 = BitVecVal(2, 2) 4455  >>> v = simplify(ZeroExt(6, v0)) 4462

_z3_assert(_is_int(n),

"First argument must be an integer"

)

4463

_z3_assert(

is_bv

(a),

"Second argument must be a Z3 bit-vector expression"

)

4468  """Return an expression representing `n` copies of `a`. 4470  >>> x = BitVec('x', 8) 4471  >>> n = RepeatBitVec(4, x) 4476  >>> v0 = BitVecVal(10, 4) 4477  >>> print("%.x" % v0.as_long()) 4479  >>> v = simplify(RepeatBitVec(4, v0)) 4482  >>> print("%.x" % v.as_long()) 4486

_z3_assert(_is_int(n),

"First argument must be an integer"

)

4487

_z3_assert(

is_bv

(a),

"Second argument must be a Z3 bit-vector expression"

)

4492  """Return the reduction-and expression of `a`.""" 4494

_z3_assert(

is_bv

(a),

"First argument must be a Z3 bit-vector expression"

)

4499  """Return the reduction-or expression of `a`.""" 4501

_z3_assert(

is_bv

(a),

"First argument must be a Z3 bit-vector expression"

)

4506  """A predicate the determines that bit-vector addition does not overflow""" 4507

_check_bv_args(a, b)

4508

a, b = _coerce_exprs(a, b)

4513  """A predicate the determines that signed bit-vector addition does not underflow""" 4514

_check_bv_args(a, b)

4515

a, b = _coerce_exprs(a, b)

4520  """A predicate the determines that bit-vector subtraction does not overflow""" 4521

_check_bv_args(a, b)

4522

a, b = _coerce_exprs(a, b)

4527  """A predicate the determines that bit-vector subtraction does not underflow""" 4528

_check_bv_args(a, b)

4529

a, b = _coerce_exprs(a, b)

4534  """A predicate the determines that bit-vector signed division does not overflow""" 4535

_check_bv_args(a, b)

4536

a, b = _coerce_exprs(a, b)

4541  """A predicate the determines that bit-vector unary negation does not overflow""" 4543

_z3_assert(

is_bv

(a),

"First argument must be a Z3 bit-vector expression"

)

4548  """A predicate the determines that bit-vector multiplication does not overflow""" 4549

_check_bv_args(a, b)

4550

a, b = _coerce_exprs(a, b)

4555  """A predicate the determines that bit-vector signed multiplication does not underflow""" 4556

_check_bv_args(a, b)

4557

a, b = _coerce_exprs(a, b)

4571  """Return the domain of the array sort `self`. 4573  >>> A = ArraySort(IntSort(), BoolSort()) 4580  """Return the domain of the array sort `self`. 4585  """Return the range of the array sort `self`. 4587  >>> A = ArraySort(IntSort(), BoolSort()) 4595  """Array expressions. """ 4598  """Return the array sort of the array expression `self`. 4600  >>> a = Array('a', IntSort(), BoolSort()) 4607  """Shorthand for `self.sort().domain()`. 4609  >>> a = Array('a', IntSort(), BoolSort()) 4616  """Shorthand for self.sort().domain_n(i)`.""" 4620  """Shorthand for `self.sort().range()`. 4622  >>> a = Array('a', IntSort(), BoolSort()) 4629  """Return the Z3 expression `self[arg]`. 4631  >>> a = Array('a', IntSort(), BoolSort()) 4638  return

_array_select(self, arg)

4644 def

_array_select(ar, arg):

4645  if

isinstance(arg, tuple):

4646

args = [ar.sort().

domain_n

(i).cast(arg[i])

for

i

in range

(len(arg))]

4647

_args, sz = _to_ast_array(args)

4648  return

_to_expr_ref(

Z3_mk_select_n

(ar.ctx_ref(), ar.as_ast(), sz, _args), ar.ctx)

4649

arg = ar.sort().

domain

().cast(arg)

4650  return

_to_expr_ref(

Z3_mk_select

(ar.ctx_ref(), ar.as_ast(), arg.as_ast()), ar.ctx)

4658  """Return `True` if `a` is a Z3 array expression. 4660  >>> a = Array('a', IntSort(), IntSort()) 4663  >>> is_array(Store(a, 0, 1)) 4668  return

isinstance(a, ArrayRef)

4672  """Return `True` if `a` is a Z3 constant array. 4674  >>> a = K(IntSort(), 10) 4675  >>> is_const_array(a) 4677  >>> a = Array('a', IntSort(), IntSort()) 4678  >>> is_const_array(a) 4685  """Return `True` if `a` is a Z3 constant array. 4687  >>> a = K(IntSort(), 10) 4690  >>> a = Array('a', IntSort(), IntSort()) 4698  """Return `True` if `a` is a Z3 map array expression. 4700  >>> f = Function('f', IntSort(), IntSort()) 4701  >>> b = Array('b', IntSort(), IntSort()) 4714  """Return `True` if `a` is a Z3 default array expression. 4715  >>> d = Default(K(IntSort(), 10)) 4719  return is_app_of

(a, Z3_OP_ARRAY_DEFAULT)

4723  """Return the function declaration associated with a Z3 map array expression. 4725  >>> f = Function('f', IntSort(), IntSort()) 4726  >>> b = Array('b', IntSort(), IntSort()) 4728  >>> eq(f, get_map_func(a)) 4732  >>> get_map_func(a)(0) 4736

_z3_assert(

is_map

(a),

"Z3 array map expression expected."

)

4747  """Return the Z3 array sort with the given domain and range sorts. 4749  >>> A = ArraySort(IntSort(), BoolSort()) 4756  >>> AA = ArraySort(IntSort(), A) 4758  Array(Int, Array(Int, Bool)) 4760

sig = _get_args(sig)

4762

_z3_assert(len(sig) > 1,

"At least two arguments expected"

)

4763

arity = len(sig) - 1

4768

_z3_assert(

is_sort

(s),

"Z3 sort expected"

)

4769

_z3_assert(s.ctx == r.ctx,

"Context mismatch"

)

4773

dom = (Sort * arity)()

4774  for

i

in range

(arity):

4780  """Return an array constant named `name` with the given domain and range sorts. 4782  >>> a = Array('a', IntSort(), IntSort()) 4794  """Return a Z3 store array expression. 4796  >>> a = Array('a', IntSort(), IntSort()) 4797  >>> i, v = Ints('i v') 4798  >>> s = Update(a, i, v) 4801  >>> prove(s[i] == v) 4804  >>> prove(Implies(i != j, s[j] == a[j])) 4808

_z3_assert(

is_array_sort

(a),

"First argument must be a Z3 array expression"

)

4809

args = _get_args(args)

4812  raise

Z3Exception(

"array update requires index and value arguments"

)

4816

i = a.sort().domain().cast(i)

4817

v = a.sort().

range

().cast(v)

4818  return

_to_expr_ref(

Z3_mk_store

(ctx.ref(), a.as_ast(), i.as_ast(), v.as_ast()), ctx)

4819

v = a.sort().

range

().cast(args[-1])

4820

idxs = [a.sort().domain_n(i).cast(args[i])

for

i

in range

(len(args)-1)]

4821

_args, sz = _to_ast_array(idxs)

4822  return

_to_expr_ref(

Z3_mk_store_n

(ctx.ref(), a.as_ast(), sz, _args, v.as_ast()), ctx)

4826  """ Return a default value for array expression. 4827  >>> b = K(IntSort(), 1) 4828  >>> prove(Default(b) == 1) 4832

_z3_assert(

is_array_sort

(a),

"First argument must be a Z3 array expression"

)

4837  """Return a Z3 store array expression. 4839  >>> a = Array('a', IntSort(), IntSort()) 4840  >>> i, v = Ints('i v') 4841  >>> s = Store(a, i, v) 4844  >>> prove(s[i] == v) 4847  >>> prove(Implies(i != j, s[j] == a[j])) 4854  """Return a Z3 select array expression. 4856  >>> a = Array('a', IntSort(), IntSort()) 4860  >>> eq(Select(a, i), a[i]) 4863

args = _get_args(args)

4865

_z3_assert(

is_array_sort

(a),

"First argument must be a Z3 array expression"

)

4870  """Return a Z3 map array expression. 4872  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 4873  >>> a1 = Array('a1', IntSort(), IntSort()) 4874  >>> a2 = Array('a2', IntSort(), IntSort()) 4875  >>> b = Map(f, a1, a2) 4878  >>> prove(b[0] == f(a1[0], a2[0])) 4881

args = _get_args(args)

4883

_z3_assert(len(args) > 0,

"At least one Z3 array expression expected"

)

4884

_z3_assert(

is_func_decl

(f),

"First argument must be a Z3 function declaration"

)

4885

_z3_assert(all([

is_array

(a)

for

a

in

args]),

"Z3 array expected expected"

)

4886

_z3_assert(len(args) == f.arity(),

"Number of arguments mismatch"

)

4887

_args, sz = _to_ast_array(args)

4893  """Return a Z3 constant array expression. 4895  >>> a = K(IntSort(), 10) 4907

_z3_assert(

is_sort

(dom),

"Z3 sort expected"

)

4910

v = _py2expr(v, ctx)

4915  """Return extensionality index for one-dimensional arrays. 4916  >> a, b = Consts('a b', SetSort(IntSort())) 4923  return

_to_expr_ref(

Z3_mk_array_ext

(ctx.ref(), a.as_ast(), b.as_ast()), ctx)

4928

k = _py2expr(k, ctx)

4933  """Return `True` if `a` is a Z3 array select application. 4935  >>> a = Array('a', IntSort(), IntSort()) 4946  """Return `True` if `a` is a Z3 array store application. 4948  >>> a = Array('a', IntSort(), IntSort()) 4951  >>> is_store(Store(a, 0, 1)) 4964  """ Create a set sort over element sort s""" 4969  """Create the empty set 4970  >>> EmptySet(IntSort()) 4978  """Create the full set 4979  >>> FullSet(IntSort()) 4987  """ Take the union of sets 4988  >>> a = Const('a', SetSort(IntSort())) 4989  >>> b = Const('b', SetSort(IntSort())) 4993

args = _get_args(args)

4994

ctx = _ctx_from_ast_arg_list(args)

4995

_args, sz = _to_ast_array(args)

5000  """ Take the union of sets 5001  >>> a = Const('a', SetSort(IntSort())) 5002  >>> b = Const('b', SetSort(IntSort())) 5003  >>> SetIntersect(a, b) 5006

args = _get_args(args)

5007

ctx = _ctx_from_ast_arg_list(args)

5008

_args, sz = _to_ast_array(args)

5013  """ Add element e to set s 5014  >>> a = Const('a', SetSort(IntSort())) 5018

ctx = _ctx_from_ast_arg_list([s, e])

5019

e = _py2expr(e, ctx)

5024  """ Remove element e to set s 5025  >>> a = Const('a', SetSort(IntSort())) 5029

ctx = _ctx_from_ast_arg_list([s, e])

5030

e = _py2expr(e, ctx)

5035  """ The complement of set s 5036  >>> a = Const('a', SetSort(IntSort())) 5037  >>> SetComplement(a) 5045  """ The set difference of a and b 5046  >>> a = Const('a', SetSort(IntSort())) 5047  >>> b = Const('b', SetSort(IntSort())) 5048  >>> SetDifference(a, b) 5051

ctx = _ctx_from_ast_arg_list([a, b])

5056  """ Check if e is a member of set s 5057  >>> a = Const('a', SetSort(IntSort())) 5061

ctx = _ctx_from_ast_arg_list([s, e])

5062

e = _py2expr(e, ctx)

5067  """ Check if a is a subset of b 5068  >>> a = Const('a', SetSort(IntSort())) 5069  >>> b = Const('b', SetSort(IntSort())) 5073

ctx = _ctx_from_ast_arg_list([a, b])

5083 def

_valid_accessor(acc):

5084  """Return `True` if acc is pair of the form (String, Datatype or Sort). """ 5085  if not

isinstance(acc, tuple):

5089  return

isinstance(acc[0], str)

and

(isinstance(acc[1], Datatype)

or is_sort

(acc[1]))

5093  """Helper class for declaring Z3 datatypes. 5095  >>> List = Datatype('List') 5096  >>> List.declare('cons', ('car', IntSort()), ('cdr', List)) 5097  >>> List.declare('nil') 5098  >>> List = List.create() 5099  >>> # List is now a Z3 declaration 5102  >>> List.cons(10, List.nil) 5104  >>> List.cons(10, List.nil).sort() 5106  >>> cons = List.cons 5110  >>> n = cons(1, cons(0, nil)) 5112  cons(1, cons(0, nil)) 5113  >>> simplify(cdr(n)) 5115  >>> simplify(car(n)) 5126

r.constructors = copy.deepcopy(self.

constructors

constructors)

5131

_z3_assert(isinstance(name, str),

"String expected"

)

5132

_z3_assert(isinstance(rec_name, str),

"String expected"

)

5134

all([_valid_accessor(a)

for

a

in

args]),

5135  "Valid list of accessors expected. An accessor is a pair of the form (String, Datatype|Sort)"

,

5137

self.

constructors

constructors.append((name, rec_name, args))

5140  """Declare constructor named `name` with the given accessors `args`. 5141  Each accessor is a pair `(name, sort)`, where `name` is a string and `sort` a Z3 sort 5142  or a reference to the datatypes being declared. 5144  In the following example `List.declare('cons', ('car', IntSort()), ('cdr', List))` 5145  declares the constructor named `cons` that builds a new List using an integer and a List. 5146  It also declares the accessors `car` and `cdr`. The accessor `car` extracts the integer 5147  of a `cons` cell, and `cdr` the list of a `cons` cell. After all constructors were declared, 5148  we use the method create() to create the actual datatype in Z3. 5150  >>> List = Datatype('List') 5151  >>> List.declare('cons', ('car', IntSort()), ('cdr', List)) 5152  >>> List.declare('nil') 5153  >>> List = List.create() 5156

_z3_assert(isinstance(name, str),

"String expected"

)

5157

_z3_assert(name !=

""

,

"Constructor name cannot be empty"

)

5158  return

self.

declare_core

declare_core(name,

"is-"

+ name, *args)

5161  return "Datatype(%s, %s)"

% (self.

name

name, self.

constructors

constructors)

5164  """Create a Z3 datatype based on the constructors declared using the method `declare()`. 5166  The function `CreateDatatypes()` must be used to define mutually recursive datatypes. 5168  >>> List = Datatype('List') 5169  >>> List.declare('cons', ('car', IntSort()), ('cdr', List)) 5170  >>> List.declare('nil') 5171  >>> List = List.create() 5174  >>> List.cons(10, List.nil) 5181  """Auxiliary object used to create Z3 datatypes.""" 5188  if

self.

ctx

ctx.ref()

is not None and

Z3_del_constructor

is not None

:

5193  """Auxiliary object used to create Z3 datatypes.""" 5200  if

self.

ctx

ctx.ref()

is not None and

Z3_del_constructor_list

is not None

:

5205  """Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects. 5207  In the following example we define a Tree-List using two mutually recursive datatypes. 5209  >>> TreeList = Datatype('TreeList') 5210  >>> Tree = Datatype('Tree') 5211  >>> # Tree has two constructors: leaf and node 5212  >>> Tree.declare('leaf', ('val', IntSort())) 5213  >>> # a node contains a list of trees 5214  >>> Tree.declare('node', ('children', TreeList)) 5215  >>> TreeList.declare('nil') 5216  >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList)) 5217  >>> Tree, TreeList = CreateDatatypes(Tree, TreeList) 5218  >>> Tree.val(Tree.leaf(10)) 5220  >>> simplify(Tree.val(Tree.leaf(10))) 5222  >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil))) 5224  node(cons(leaf(10), cons(leaf(20), nil))) 5225  >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil)) 5226  >>> simplify(n2 == n1) 5228  >>> simplify(TreeList.car(Tree.children(n2)) == n1) 5233

_z3_assert(len(ds) > 0,

"At least one Datatype must be specified"

)

5234

_z3_assert(all([isinstance(d, Datatype)

for

d

in

ds]),

"Arguments must be Datatypes"

)

5235

_z3_assert(all([d.ctx == ds[0].ctx

for

d

in

ds]),

"Context mismatch"

)

5236

_z3_assert(all([d.constructors != []

for

d

in

ds]),

"Non-empty Datatypes expected"

)

5239

names = (Symbol * num)()

5240

out = (Sort * num)()

5241

clists = (ConstructorList * num)()

5243  for

i

in range

(num):

5246

num_cs = len(d.constructors)

5247

cs = (Constructor * num_cs)()

5248  for

j

in range

(num_cs):

5249

c = d.constructors[j]

5254

fnames = (Symbol * num_fs)()

5255

sorts = (Sort * num_fs)()

5256

refs = (ctypes.c_uint * num_fs)()

5257  for

k

in range

(num_fs):

5261  if

isinstance(ftype, Datatype):

5264

ds.count(ftype) == 1,

5265  "One and only one occurrence of each datatype is expected"

,

5268

refs[k] = ds.index(ftype)

5271

_z3_assert(

is_sort

(ftype),

"Z3 sort expected"

)

5272

sorts[k] = ftype.ast

5274

cs[j] =

Z3_mk_constructor

(ctx.ref(), cname, rname, num_fs, fnames, sorts, refs)

5281  for

i

in range

(num):

5283

num_cs = dref.num_constructors()

5284  for

j

in range

(num_cs):

5285

cref = dref.constructor(j)

5286

cref_name = cref.name()

5287

cref_arity = cref.arity()

5288  if

cref.arity() == 0:

5290

setattr(dref, cref_name, cref)

5291

rref = dref.recognizer(j)

5292

setattr(dref,

"is_"

+ cref_name, rref)

5293  for

k

in range

(cref_arity):

5294

aref = dref.accessor(j, k)

5295

setattr(dref, aref.name(), aref)

5297  return

tuple(result)

5301  """Datatype sorts.""" 5304  """Return the number of constructors in the given Z3 datatype. 5306  >>> List = Datatype('List') 5307  >>> List.declare('cons', ('car', IntSort()), ('cdr', List)) 5308  >>> List.declare('nil') 5309  >>> List = List.create() 5310  >>> # List is now a Z3 declaration 5311  >>> List.num_constructors() 5317  """Return a constructor of the datatype `self`. 5319  >>> List = Datatype('List') 5320  >>> List.declare('cons', ('car', IntSort()), ('cdr', List)) 5321  >>> List.declare('nil') 5322  >>> List = List.create() 5323  >>> # List is now a Z3 declaration 5324  >>> List.num_constructors() 5326  >>> List.constructor(0) 5328  >>> List.constructor(1) 5332

_z3_assert(idx < self.

num_constructors

num_constructors(),

"Invalid constructor index"

)

5336  """In Z3, each constructor has an associated recognizer predicate. 5338  If the constructor is named `name`, then the recognizer `is_name`. 5340  >>> List = Datatype('List') 5341  >>> List.declare('cons', ('car', IntSort()), ('cdr', List)) 5342  >>> List.declare('nil') 5343  >>> List = List.create() 5344  >>> # List is now a Z3 declaration 5345  >>> List.num_constructors() 5347  >>> List.recognizer(0) 5349  >>> List.recognizer(1) 5351  >>> simplify(List.is_nil(List.cons(10, List.nil))) 5353  >>> simplify(List.is_cons(List.cons(10, List.nil))) 5355  >>> l = Const('l', List) 5356  >>> simplify(List.is_cons(l)) 5360

_z3_assert(idx < self.

num_constructors

num_constructors(),

"Invalid recognizer index"

)

5364  """In Z3, each constructor has 0 or more accessor. 5365  The number of accessors is equal to the arity of the constructor. 5367  >>> List = Datatype('List') 5368  >>> List.declare('cons', ('car', IntSort()), ('cdr', List)) 5369  >>> List.declare('nil') 5370  >>> List = List.create() 5371  >>> List.num_constructors() 5373  >>> List.constructor(0) 5375  >>> num_accs = List.constructor(0).arity() 5378  >>> List.accessor(0, 0) 5380  >>> List.accessor(0, 1) 5382  >>> List.constructor(1) 5384  >>> num_accs = List.constructor(1).arity() 5389

_z3_assert(i < self.

num_constructors

num_constructors(),

"Invalid constructor index"

)

5390

_z3_assert(j < self.

constructor

constructor(i).arity(),

"Invalid accessor index"

)

5398  """Datatype expressions.""" 5401  """Return the datatype sort of the datatype expression `self`.""" 5405  """Create a reference to a sort that was declared, or will be declared, as a recursive datatype""" 5410  """Create a named tuple sort base on a set of underlying sorts 5412  >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()]) 5415

projects = [(

"project%d"

% i, sorts[i])

for

i

in range

(len(sorts))]

5416

tuple.declare(name, *projects)

5417

tuple = tuple.create()

5418  return

tuple, tuple.constructor(0), [tuple.accessor(0, i)

for

i

in range

(len(sorts))]

5422  """Create a named tagged union sort base on a set of underlying sorts 5424  >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()]) 5427  for

i

in range

(len(sorts)):

5428

sum.declare(

"inject%d"

% i, (

"project%d"

% i, sorts[i]))

5430  return

sum, [(sum.constructor(i), sum.accessor(i, 0))

for

i

in range

(len(sorts))]

5434  """Return a new enumeration sort named `name` containing the given values. 5436  The result is a pair (sort, list of constants). 5438  >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue']) 5441

_z3_assert(isinstance(name, str),

"Name must be a string"

)

5442

_z3_assert(all([isinstance(v, str)

for

v

in

values]),

"Enumeration sort values must be strings"

)

5443

_z3_assert(len(values) > 0,

"At least one value expected"

)

5446

_val_names = (Symbol * num)()

5447  for

i

in range

(num):

5448

_val_names[i] =

to_symbol

(values[i], ctx)

5449

_values = (FuncDecl * num)()

5450

_testers = (FuncDecl * num)()

5454  for

i

in range

(num):

5456

V = [a()

for

a

in

V]

5467  """Set of parameters used to configure Solvers, Tactics and Simplifiers in Z3. 5469  Consider using the function `args2params` to create instances of this object. 5477

self.

params

params = params

5484  if

self.

ctx

ctx.ref()

is not None and

Z3_params_dec_ref

is not None

:

5488  """Set parameter name with value val.""" 5490

_z3_assert(isinstance(name, str),

"parameter name must be a string"

)

5492  if

isinstance(val, bool):

5496  elif

isinstance(val, float):

5498  elif

isinstance(val, str):

5502

_z3_assert(

False

,

"invalid parameter value"

)

5508

_z3_assert(isinstance(ds, ParamDescrsRef),

"parameter description set expected"

)

5513  """Convert python arguments into a Z3_params object. 5514  A ':' is added to the keywords, and '_' is replaced with '-' 5516  >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True}) 5517  (params model true relevancy 2 elim_and true) 5520

_z3_assert(len(arguments) % 2 == 0,

"Argument list must have an even number of elements."

)

5536  """Set of parameter descriptions for Solvers, Tactics and Simplifiers in Z3. 5540

_z3_assert(isinstance(descr, ParamDescrs),

"parameter description object expected"

)

5546  return

ParamsDescrsRef(self.

descr

descr, self.

ctx

ctx)

5549  if

self.

ctx

ctx.ref()

is not None and

Z3_param_descrs_dec_ref

is not None

:

5553  """Return the size of in the parameter description `self`. 5558  """Return the size of in the parameter description `self`. 5560  return

self.

size

size()

5563  """Return the i-th parameter name in the parameter description `self`. 5568  """Return the kind of the parameter named `n`. 5573  """Return the documentation string of the parameter named `n`. 5579  return

self.

get_name

get_name(arg)

5581  return

self.

get_kind

get_kind(arg)

5594  """Goal is a collection of constraints we want to find a solution or show to be unsatisfiable (infeasible). 5596  Goals are processed using Tactics. A Tactic transforms a goal into a set of subgoals. 5597  A goal has a solution if one of its subgoals has a solution. 5598  A goal is unsatisfiable if all subgoals are unsatisfiable. 5601  def __init__

(self, models=True, unsat_cores=False, proofs=False, ctx=None, goal=None):

5603

_z3_assert(goal

is None or

ctx

is not None

,

5604  "If goal is different from None, then ctx must be also different from None"

)

5607  if

self.

goal

goal

is None

:

5612  if

self.

goal

goal

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_goal_dec_ref

is not None

:

5616  """Return the depth of the goal `self`. 5617  The depth corresponds to the number of tactics applied to `self`. 5619  >>> x, y = Ints('x y') 5621  >>> g.add(x == 0, y >= x + 1) 5624  >>> r = Then('simplify', 'solve-eqs')(g) 5625  >>> # r has 1 subgoal 5634  """Return `True` if `self` contains the `False` constraints. 5636  >>> x, y = Ints('x y') 5638  >>> g.inconsistent() 5640  >>> g.add(x == 0, x == 1) 5643  >>> g.inconsistent() 5645  >>> g2 = Tactic('propagate-values')(g)[0] 5646  >>> g2.inconsistent() 5652  """Return the precision (under-approximation, over-approximation, or precise) of the goal `self`. 5655  >>> g.prec() == Z3_GOAL_PRECISE 5657  >>> x, y = Ints('x y') 5658  >>> g.add(x == y + 1) 5659  >>> g.prec() == Z3_GOAL_PRECISE 5661  >>> t = With(Tactic('add-bounds'), add_bound_lower=0, add_bound_upper=10) 5664  [x == y + 1, x <= 10, x >= 0, y <= 10, y >= 0] 5665  >>> g2.prec() == Z3_GOAL_PRECISE 5667  >>> g2.prec() == Z3_GOAL_UNDER 5673  """Alias for `prec()`. 5676  >>> g.precision() == Z3_GOAL_PRECISE 5679  return

self.

prec

prec()

5682  """Return the number of constraints in the goal `self`. 5687  >>> x, y = Ints('x y') 5688  >>> g.add(x == 0, y > x) 5695  """Return the number of constraints in the goal `self`. 5700  >>> x, y = Ints('x y') 5701  >>> g.add(x == 0, y > x) 5705  return

self.

size

size()

5708  """Return a constraint in the goal `self`. 5711  >>> x, y = Ints('x y') 5712  >>> g.add(x == 0, y > x) 5721  """Return a constraint in the goal `self`. 5724  >>> x, y = Ints('x y') 5725  >>> g.add(x == 0, y > x) 5731  if

arg >= len(self):

5733  return

self.

get

get(arg)

5736  """Assert constraints into the goal. 5740  >>> g.assert_exprs(x > 0, x < 2) 5744

args = _get_args(args)

5755  >>> g.append(x > 0, x < 2) 5766  >>> g.insert(x > 0, x < 2) 5777  >>> g.add(x > 0, x < 2) 5784  """Retrieve model from a satisfiable goal 5785  >>> a, b = Ints('a b') 5787  >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b) 5788  >>> t = Then(Tactic('split-clause'), Tactic('solve-eqs')) 5791  [Or(b == 0, b == 1), Not(0 <= b)] 5793  [Or(b == 0, b == 1), Not(1 <= b)] 5794  >>> # Remark: the subgoal r[0] is unsatisfiable 5795  >>> # Creating a solver for solving the second subgoal 5802  >>> # Model s.model() does not assign a value to `a` 5803  >>> # It is a model for subgoal `r[1]`, but not for goal `g` 5804  >>> # The method convert_model creates a model for `g` from a model for `r[1]`. 5805  >>> r[1].convert_model(s.model()) 5809

_z3_assert(isinstance(model, ModelRef),

"Z3 Model expected"

)

5813  return

obj_to_string(self)

5816  """Return a textual representation of the s-expression representing the goal.""" 5820  """Return a textual representation of the goal in DIMACS format.""" 5824  """Copy goal `self` to context `target`. 5832  >>> g2 = g.translate(c2) 5835  >>> g.ctx == main_ctx() 5839  >>> g2.ctx == main_ctx() 5843

_z3_assert(isinstance(target, Context),

"target must be a context"

)

5853  """Return a new simplified goal. 5855  This method is essentially invoking the simplify tactic. 5859  >>> g.add(x + 1 >= 2) 5862  >>> g2 = g.simplify() 5865  >>> # g was not modified 5869

t =

Tactic

(

"simplify"

)

5870  return

t.apply(self, *arguments, **keywords)[0]

5873  """Return goal `self` as a single Z3 expression. 5890  return

self.

get

get(0)

5892  return And

([self.

get

get(i)

for

i

in range

(len(self))], self.

ctx

ctx)

5902  """A collection (vector) of ASTs.""" 5911  assert

ctx

is not None 5916  if

self.

vector

vector

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_ast_vector_dec_ref

is not None

:

5920  """Return the size of the vector `self`. 5925  >>> A.push(Int('x')) 5926  >>> A.push(Int('x')) 5933  """Return the AST at position `i`. 5936  >>> A.push(Int('x') + 1) 5937  >>> A.push(Int('y')) 5944  if

isinstance(i, int):

5948  if

i >= self.

__len__

__len__():

5952  elif

isinstance(i, slice):

5955

result.append(_to_ast_ref(

5962  """Update AST at position `i`. 5965  >>> A.push(Int('x') + 1) 5966  >>> A.push(Int('y')) 5973  if

i >= self.

__len__

__len__():

5978  """Add `v` in the end of the vector. 5983  >>> A.push(Int('x')) 5990  """Resize the vector to `sz` elements. 5996  >>> for i in range(10): A[i] = Int('x') 6003  """Return `True` if the vector contains `item`. 6026  """Copy vector `self` to context `other_ctx`. 6032  >>> B = A.translate(c2) 6048  return

obj_to_string(self)

6051  """Return a textual representation of the s-expression representing the vector.""" 6062  """A mapping from ASTs to ASTs.""" 6071  assert

ctx

is not None 6079  if

self.

map

map

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_ast_map_dec_ref

is not None

:

6083  """Return the size of the map. 6089  >>> M[x] = IntVal(1) 6096  """Return `True` if the map contains key `key`. 6109  """Retrieve the value associated with key `key`. 6120  """Add/Update key `k` with value `v`. 6129  >>> M[x] = IntVal(1) 6139  """Remove the entry associated with key `k`. 6153  """Remove all entries from the map. 6158  >>> M[x+x] = IntVal(1) 6168  """Return an AstVector containing all keys in the map. 6173  >>> M[x+x] = IntVal(1) 6187  """Store the value of the interpretation of a function in a particular point.""" 6198  if

self.

ctx

ctx.ref()

is not None and

Z3_func_entry_dec_ref

is not None

:

6202  """Return the number of arguments in the given entry. 6204  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 6206  >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10) 6211  >>> f_i.num_entries() 6213  >>> e = f_i.entry(0) 6220  """Return the value of argument `idx`. 6222  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 6224  >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10) 6229  >>> f_i.num_entries() 6231  >>> e = f_i.entry(0) 6242  ... except IndexError: 6243  ... print("index error") 6246  if

idx >= self.

num_args

num_args():

6251  """Return the value of the function at point `self`. 6253  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 6255  >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10) 6260  >>> f_i.num_entries() 6262  >>> e = f_i.entry(0) 6273  """Return entry `self` as a Python list. 6274  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 6276  >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10) 6281  >>> f_i.num_entries() 6283  >>> e = f_i.entry(0) 6288

args.append(self.

value

value())

6292  return

repr(self.

as_list

as_list())

6296  """Stores the interpretation of a function in a Z3 model.""" 6301  if

self.

f

f

is not None

:

6305  if

self.

f

f

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_func_interp_dec_ref

is not None

:

6310  Return the `else` value for a function interpretation. 6311  Return None if Z3 did not specify the `else` value for 6314  >>> f = Function('f', IntSort(), IntSort()) 6316  >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0) 6322  >>> m[f].else_value() 6327  return

_to_expr_ref(r, self.

ctx

ctx)

6332  """Return the number of entries/points in the function interpretation `self`. 6334  >>> f = Function('f', IntSort(), IntSort()) 6336  >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0) 6342  >>> m[f].num_entries() 6348  """Return the number of arguments for each entry in the function interpretation `self`. 6350  >>> f = Function('f', IntSort(), IntSort()) 6352  >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0) 6362  """Return an entry at position `idx < self.num_entries()` in the function interpretation `self`. 6364  >>> f = Function('f', IntSort(), IntSort()) 6366  >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0) 6372  >>> m[f].num_entries() 6382  """Copy model 'self' to context 'other_ctx'. 6393  """Return the function interpretation as a Python list. 6394  >>> f = Function('f', IntSort(), IntSort()) 6396  >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0) 6410  return

obj_to_string(self)

6414  """Model/Solution of a satisfiability problem (aka system of constraints).""" 6417  assert

ctx

is not None 6423  if

self.

ctx

ctx.ref()

is not None and

Z3_model_dec_ref

is not None

:

6427  return

obj_to_string(self)

6430  """Return a textual representation of the s-expression representing the model.""" 6433  def eval

(self, t, model_completion=False):

6434  """Evaluate the expression `t` in the model `self`. 6435  If `model_completion` is enabled, then a default interpretation is automatically added 6436  for symbols that do not have an interpretation in the model `self`. 6440  >>> s.add(x > 0, x < 2) 6453  >>> m.eval(y, model_completion=True) 6455  >>> # Now, m contains an interpretation for y 6461  return

_to_expr_ref(r[0], self.

ctx

ctx)

6462  raise

Z3Exception(

"failed to evaluate expression in the model"

)

6465  """Alias for `eval`. 6469  >>> s.add(x > 0, x < 2) 6473  >>> m.evaluate(x + 1) 6475  >>> m.evaluate(x == 1) 6478  >>> m.evaluate(y + x) 6482  >>> m.evaluate(y, model_completion=True) 6484  >>> # Now, m contains an interpretation for y 6485  >>> m.evaluate(y + x) 6488  return

self.

eval

eval(t, model_completion)

6491  """Return the number of constant and function declarations in the model `self`. 6493  >>> f = Function('f', IntSort(), IntSort()) 6496  >>> s.add(x > 0, f(x) != x) 6505  return

num_consts + num_funcs

6508  """Return the interpretation for a given declaration or constant. 6510  >>> f = Function('f', IntSort(), IntSort()) 6513  >>> s.add(x > 0, x < 2, f(x) == 0) 6523

_z3_assert(isinstance(decl, FuncDeclRef)

or is_const

(decl),

"Z3 declaration expected"

)

6527  if

decl.arity() == 0:

6529  if

_r.value

is None

:

6531

r = _to_expr_ref(_r, self.

ctx

ctx)

6545

sz = fi.num_entries()

6549

e =

Store

(e, fe.arg_value(0), fe.value())

6560  """Return the number of uninterpreted sorts that contain an interpretation in the model `self`. 6562  >>> A = DeclareSort('A') 6563  >>> a, b = Consts('a b', A) 6575  """Return the uninterpreted sort at position `idx` < self.num_sorts(). 6577  >>> A = DeclareSort('A') 6578  >>> B = DeclareSort('B') 6579  >>> a1, a2 = Consts('a1 a2', A) 6580  >>> b1, b2 = Consts('b1 b2', B) 6582  >>> s.add(a1 != a2, b1 != b2) 6598  """Return all uninterpreted sorts that have an interpretation in the model `self`. 6600  >>> A = DeclareSort('A') 6601  >>> B = DeclareSort('B') 6602  >>> a1, a2 = Consts('a1 a2', A) 6603  >>> b1, b2 = Consts('b1 b2', B) 6605  >>> s.add(a1 != a2, b1 != b2) 6615  """Return the interpretation for the uninterpreted sort `s` in the model `self`. 6617  >>> A = DeclareSort('A') 6618  >>> a, b = Consts('a b', A) 6624  >>> m.get_universe(A) 6628

_z3_assert(isinstance(s, SortRef),

"Z3 sort expected"

)

6635  """If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. 6636  If `idx` is a declaration, then the actual interpretation is returned. 6638  The elements can be retrieved using position or the actual declaration. 6640  >>> f = Function('f', IntSort(), IntSort()) 6643  >>> s.add(x > 0, x < 2, f(x) == 0) 6657  >>> for d in m: print("%s -> %s" % (d, m[d])) 6662  if

idx >= len(self):

6665  if

(idx < num_consts):

6669  if

isinstance(idx, FuncDeclRef):

6672  return

self.

get_interp

get_interp(idx.decl())

6673  if

isinstance(idx, SortRef):

6676

_z3_assert(

False

,

"Integer, Z3 declaration, or Z3 constant expected"

)

6680  """Return a list with all symbols that have an interpretation in the model `self`. 6681  >>> f = Function('f', IntSort(), IntSort()) 6684  >>> s.add(x > 0, x < 2, f(x) == 0) 6699  """Update the interpretation of a constant""" 6702  if is_func_decl

(x)

and

x.arity() != 0

and

isinstance(value, FuncInterp):

6706  for

i

in range

(value.num_entries()):

6711

v.push(e.arg_value(j))

6716  raise

Z3Exception(

"Expecting 0-ary function or constant expression"

)

6717

value = _py2expr(value)

6721  """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`. 6724

_z3_assert(isinstance(target, Context),

"argument must be a Z3 context"

)

6741  """Return true if n is a Z3 expression of the form (_ as-array f).""" 6742  return

isinstance(n, ExprRef)

and Z3_is_as_array

(n.ctx.ref(), n.as_ast())

6746  """Return the function declaration f associated with a Z3 expression of the form (_ as-array f).""" 6748

_z3_assert(

is_as_array

(n),

"as-array Z3 expression expected."

)

6759  """Statistics for `Solver.check()`.""" 6770  if

self.

ctx

ctx.ref()

is not None and

Z3_stats_dec_ref

is not None

:

6777

out.write(u(

'<table border="1" cellpadding="2" cellspacing="0">'

))

6780

out.write(u(

'<tr style="background-color:#CFCFCF">'

))

6783

out.write(u(

"<tr>"

))

6785

out.write(u(

"<td>%s</td><td>%s</td></tr>"

% (k, v)))

6786

out.write(u(

"</table>"

))

6787  return

out.getvalue()

6792  """Return the number of statistical counters. 6795  >>> s = Then('simplify', 'nlsat').solver() 6799  >>> st = s.statistics() 6806  """Return the value of statistical counter at position `idx`. The result is a pair (key, value). 6809  >>> s = Then('simplify', 'nlsat').solver() 6813  >>> st = s.statistics() 6817  ('nlsat propagations', 2) 6819  ('nlsat restarts', 1) 6821  if

idx >= len(self):

6830  """Return the list of statistical counters. 6833  >>> s = Then('simplify', 'nlsat').solver() 6837  >>> st = s.statistics() 6842  """Return the value of a particular statistical counter. 6845  >>> s = Then('simplify', 'nlsat').solver() 6849  >>> st = s.statistics() 6850  >>> st.get_key_value('nlsat propagations') 6853  for

idx

in range

(len(self)):

6859  raise

Z3Exception(

"unknown key"

)

6862  """Access the value of statistical using attributes. 6864  Remark: to access a counter containing blank spaces (e.g., 'nlsat propagations'), 6865  we should use '_' (e.g., 'nlsat_propagations'). 6868  >>> s = Then('simplify', 'nlsat').solver() 6872  >>> st = s.statistics() 6873  >>> st.nlsat_propagations 6878

key = name.replace(

"_"

,

" "

)

6882  raise

AttributeError

6892  """Represents the result of a satisfiability check: sat, unsat, unknown. 6898  >>> isinstance(r, CheckSatResult) 6909  return

isinstance(other, CheckSatResult)

and

self.

r

r == other.r

6912  return not

self.

__eq__

__eq__(other)

6916  if

self.

r

r == Z3_L_TRUE:

6918  elif

self.

r

r == Z3_L_FALSE:

6919  return "<b>unsat</b>" 6921  return "<b>unknown</b>" 6923  if

self.

r

r == Z3_L_TRUE:

6925  elif

self.

r

r == Z3_L_FALSE:

6930  def

_repr_html_(self):

6931

in_html = in_html_mode()

6932

set_html_mode(

True

)

6934

set_html_mode(in_html)

6945  Solver API provides methods for implementing the main SMT 2.0 commands: 6946  push, pop, check, get-model, etc. 6949  def __init__

(self, solver=None, ctx=None, logFile=None):

6950  assert

solver

is None or

ctx

is not None 6957

self.

solver

solver = solver

6959  if

logFile

is not None

:

6960

self.

set

set(

"smtlib2_log"

, logFile)

6963  if

self.

solver

solver

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_solver_dec_ref

is not None

:

6973  def set

(self, *args, **keys):

6974  """Set a configuration option. 6975  The method `help()` return a string containing all available options. 6978  >>> # The option MBQI can be set using three different approaches. 6979  >>> s.set(mbqi=True) 6980  >>> s.set('MBQI', True) 6981  >>> s.set(':mbqi', True) 6987  """Create a backtracking point. 7009  """Backtrack \\c num backtracking points. 7031  """Return the current number of backtracking points. 7049  """Remove all asserted constraints and backtracking points created using `push()`. 7063  """Assert constraints into the solver. 7067  >>> s.assert_exprs(x > 0, x < 2) 7071

args = _get_args(args)

7074  if

isinstance(arg, Goal)

or

isinstance(arg, AstVector):

7082  """Assert constraints into the solver. 7086  >>> s.add(x > 0, x < 2) 7097  """Assert constraints into the solver. 7101  >>> s.append(x > 0, x < 2) 7108  """Assert constraints into the solver. 7112  >>> s.insert(x > 0, x < 2) 7119  """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`. 7121  If `p` is a string, it will be automatically converted into a Boolean constant. 7126  >>> s.set(unsat_core=True) 7127  >>> s.assert_and_track(x > 0, 'p1') 7128  >>> s.assert_and_track(x != 1, 'p2') 7129  >>> s.assert_and_track(x < 0, p3) 7130  >>> print(s.check()) 7132  >>> c = s.unsat_core() 7142  if

isinstance(p, str):

7144

_z3_assert(isinstance(a, BoolRef),

"Boolean expression expected"

)

7145

_z3_assert(isinstance(p, BoolRef)

and is_const

(p),

"Boolean expression expected"

)

7149  """Check whether the assertions in the given solver plus the optional assumptions are consistent or not. 7155  >>> s.add(x > 0, x < 2) 7158  >>> s.model().eval(x) 7164  >>> s.add(2**x == 4) 7169

assumptions = _get_args(assumptions)

7170

num = len(assumptions)

7171

_assumptions = (Ast * num)()

7172  for

i

in range

(num):

7173

_assumptions[i] = s.cast(assumptions[i]).as_ast()

7178  """Return a model for the last `check()`. 7180  This function raises an exception if 7181  a model is not available (e.g., last `check()` returned unsat). 7185  >>> s.add(a + 2 == 0) 7194  raise

Z3Exception(

"model is not available"

)

7197  """Import model converter from other into the current solver""" 7201  """Interrupt the execution of the solver object. 7202  Remarks: This ensures that the interrupt applies only 7203  to the given solver object and it applies only if it is running. 7208  """Return a subset (as an AST vector) of the assumptions provided to the last check(). 7210  These are the assumptions Z3 used in the unsatisfiability proof. 7211  Assumptions are available in Z3. They are used to extract unsatisfiable cores. 7212  They may be also used to "retract" assumptions. Note that, assumptions are not really 7213  "soft constraints", but they can be used to implement them. 7215  >>> p1, p2, p3 = Bools('p1 p2 p3') 7216  >>> x, y = Ints('x y') 7218  >>> s.add(Implies(p1, x > 0)) 7219  >>> s.add(Implies(p2, y > x)) 7220  >>> s.add(Implies(p2, y < 1)) 7221  >>> s.add(Implies(p3, y > -3)) 7222  >>> s.check(p1, p2, p3) 7224  >>> core = s.unsat_core() 7233  >>> # "Retracting" p2 7240  """Determine fixed values for the variables based on the solver state and assumptions. 7242  >>> a, b, c, d = Bools('a b c d') 7243  >>> s.add(Implies(a,b), Implies(b, c)) 7244  >>> s.consequences([a],[b,c,d]) 7245  (sat, [Implies(a, b), Implies(a, c)]) 7246  >>> s.consequences([Not(c),d],[a,b,c,d]) 7247  (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))]) 7249  if

isinstance(assumptions, list):

7251  for

a

in

assumptions:

7254  if

isinstance(variables, list):

7259

_z3_assert(isinstance(assumptions, AstVector),

"ast vector expected"

)

7260

_z3_assert(isinstance(variables, AstVector),

"ast vector expected"

)

7263

variables.vector, consequences.vector)

7264

sz = len(consequences)

7265

consequences = [consequences[i]

for

i

in range

(sz)]

7269  """Parse assertions from a file""" 7273  """Parse assertions from a string""" 7278  The method takes an optional set of variables that restrict which 7279  variables may be used as a starting point for cubing. 7280  If vars is not None, then the first case split is based on a variable in 7284  if

vars

is not None

:

7291  if

(len(r) == 1

and is_false

(r[0])):

7298  """Access the set of variables that were touched by the most recently generated cube. 7299  This set of variables can be used as a starting point for additional cubes. 7300  The idea is that variables that appear in clauses that are reduced by the most recent 7301  cube are likely more useful to cube on.""" 7305

t = _py2expr(t, self.

ctx

ctx)

7306  """Retrieve congruence closure root of the term t relative to the current search state 7307  The function primarily works for SimpleSolver. Terms and variables that are 7308  eliminated during pre-processing are not visible to the congruence closure. 7313

t = _py2expr(t, self.

ctx

ctx)

7314  """Retrieve congruence closure sibling of the term t relative to the current search state 7315  The function primarily works for SimpleSolver. Terms and variables that are 7316  eliminated during pre-processing are not visible to the congruence closure. 7321  """Return a proof for the last `check()`. Proof construction must be enabled.""" 7325  """Return an AST vector containing all added constraints. 7339  """Return an AST vector containing all currently inferred units. 7344  """Return an AST vector containing all atomic formulas in solver state that are not units. 7349  """Return trail and decision levels of the solver state after a check() call. 7351

trail = self.

trail

trail()

7352

levels = (ctypes.c_uint * len(trail))()

7354  return

trail, levels

7357  """initialize the solver's state by setting the initial value of var to value 7360

value = s.cast(value)

7364  """Return trail of the solver state after a check() call. 7369  """Return statistics for the last `check()`. 7371  >>> s = SimpleSolver() 7376  >>> st = s.statistics() 7377  >>> st.get_key_value('final checks') 7387  """Return a string describing why the last `check()` returned `unknown`. 7390  >>> s = SimpleSolver() 7391  >>> s.add(2**x == 4) 7394  >>> s.reason_unknown() 7395  '(incomplete (theory arithmetic))' 7400  """Display a string describing all available options.""" 7404  """Return the parameter description set.""" 7408  """Return a formatted string with all added constraints.""" 7409  return

obj_to_string(self)

7412  """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`. 7416  >>> s1 = Solver(ctx=c1) 7417  >>> s2 = s1.translate(c2) 7420

_z3_assert(isinstance(target, Context),

"argument must be a Z3 context"

)

7422  return Solver

(solver, target)

7431  """Return a formatted string (in Lisp-like format) with all added constraints. 7432  We say the string is in s-expression format. 7443  """Return a textual representation of the solver in DIMACS format.""" 7447  """return SMTLIB2 formatted benchmark for solver's assertions""" 7454  for

i

in range

(sz1):

7455

v[i] = es[i].as_ast()

7457

e = es[sz1].as_ast()

7461

self.

ctx

ctx.ref(),

"benchmark generated from python API"

,

""

,

"unknown"

,

""

, sz1, v, e,

7466  """Create a solver customized for the given logic. 7468  The parameter `logic` is a string. It should be contains 7469  the name of a SMT-LIB logic. 7470  See http://www.smtlib.org/ for the name of all available logics. 7472  >>> s = SolverFor("QF_LIA") 7487  """Return a simple general purpose solver with limited amount of preprocessing. 7489  >>> s = SimpleSolver() 7506  """Fixedpoint API provides methods for solving with recursive predicates""" 7509  assert

fixedpoint

is None or

ctx

is not None 7512  if

fixedpoint

is None

:

7520  return

FixedPoint(self.

fixedpoint

fixedpoint, self.

ctx

ctx)

7523  if

self.

fixedpoint

fixedpoint

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_fixedpoint_dec_ref

is not None

:

7526  def set

(self, *args, **keys):

7527  """Set a configuration option. The method `help()` return a string containing all available options. 7533  """Display a string describing all available options.""" 7537  """Return the parameter description set.""" 7541  """Assert constraints as background axioms for the fixedpoint solver.""" 7542

args = _get_args(args)

7545  if

isinstance(arg, Goal)

or

isinstance(arg, AstVector):

7555  """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr.""" 7563  """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr.""" 7567  """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr.""" 7571  """Assert rules defining recursive predicates to the fixedpoint solver. 7574  >>> s = Fixedpoint() 7575  >>> s.register_relation(a.decl()) 7576  >>> s.register_relation(b.decl()) 7586

head = self.

abstract

abstract(head)

7589

body = _get_args(body)

7593  def rule

(self, head, body=None, name=None):

7594  """Assert rules defining recursive predicates to the fixedpoint solver. Alias for add_rule.""" 7595

self.

add_rule

add_rule(head, body, name)

7598  """Assert facts defining recursive predicates to the fixedpoint solver. Alias for add_rule.""" 7599

self.

add_rule

add_rule(head,

None

, name)

7602  """Query the fixedpoint engine whether formula is derivable. 7603  You can also pass an tuple or list of recursive predicates. 7605

query = _get_args(query)

7607  if

sz >= 1

and

isinstance(query[0], FuncDeclRef):

7608

_decls = (FuncDecl * sz)()

7618

query =

And

(query, self.

ctx

ctx)

7619

query = self.

abstract

abstract(query,

False

)

7624  """Query the fixedpoint engine whether formula is derivable starting at the given query level. 7626

query = _get_args(query)

7628  if

sz >= 1

and

isinstance(query[0], FuncDecl):

7629

_z3_assert(

False

,

"unsupported"

)

7635

query = self.

abstract

abstract(query,

False

)

7636

r = Z3_fixedpoint_query_from_lvl(self.

ctx

ctx.ref(), self.

fixedpoint

fixedpoint, query.as_ast(), lvl)

7644

body = _get_args(body)

7649  """Retrieve answer from last query call.""" 7651  return

_to_expr_ref(r, self.

ctx

ctx)

7654  """Retrieve a ground cex from last query call.""" 7655

r = Z3_fixedpoint_get_ground_sat_answer(self.

ctx

ctx.ref(), self.

fixedpoint

fixedpoint)

7656  return

_to_expr_ref(r, self.

ctx

ctx)

7659  """retrieve rules along the counterexample trace""" 7663  """retrieve rule names along the counterexample trace""" 7666

names = _symbol2py(self.

ctx

ctx, Z3_fixedpoint_get_rule_names_along_trace(self.

ctx

ctx.ref(), self.

fixedpoint

fixedpoint))

7668  return

names.split(

";"

)

7671  """Retrieve number of levels used for predicate in PDR engine""" 7675  """Retrieve properties known about predicate for the level'th unfolding. 7676  -1 is treated as the limit (infinity) 7679  return

_to_expr_ref(r, self.

ctx

ctx)

7682  """Add property to predicate for the level'th unfolding. 7683  -1 is treated as infinity (infinity) 7688  """Register relation as recursive""" 7689

relations = _get_args(relations)

7694  """Control how relation is represented""" 7695

representations = _get_args(representations)

7696

representations = [

to_symbol

(s)

for

s

in

representations]

7697

sz = len(representations)

7698

args = (Symbol * sz)()

7699  for

i

in range

(sz):

7700

args[i] = representations[i]

7704  """Parse rules and queries from a string""" 7708  """Parse rules and queries from a file""" 7712  """retrieve rules that have been added to fixedpoint context""" 7716  """retrieve assertions that have been added to fixedpoint context""" 7720  """Return a formatted string with all added rules and constraints.""" 7721  return

self.

sexpr

sexpr()

7724  """Return a formatted string (in Lisp-like format) with all added constraints. 7725  We say the string is in s-expression format. 7730  """Return a formatted string (in Lisp-like format) with all added constraints. 7731  We say the string is in s-expression format. 7732  Include also queries. 7734

args, len = _to_ast_array(queries)

7738  """Return statistics for the last `query()`. 7743  """Return a string describing why the last `query()` returned `unknown`. 7748  """Add variable or several variables. 7749  The added variable or variables will be bound in the rules 7752

vars = _get_args(vars)

7754

self.

vars

vars += [v]

7757  if

self.

vars

vars == []:

7772  """Finite domain sort.""" 7775  """Return the size of the finite domain sort""" 7776

r = (ctypes.c_ulonglong * 1)()

7780  raise

Z3Exception(

"Failed to retrieve finite domain sort size"

)

7784  """Create a named finite domain sort of a given size sz""" 7785  if not

isinstance(name, Symbol):

7792  """Return True if `s` is a Z3 finite-domain sort. 7794  >>> is_finite_domain_sort(FiniteDomainSort('S', 100)) 7796  >>> is_finite_domain_sort(IntSort()) 7799  return

isinstance(s, FiniteDomainSortRef)

7803  """Finite-domain expressions.""" 7806  """Return the sort of the finite-domain expression `self`.""" 7810  """Return a Z3 floating point expression as a Python string.""" 7815  """Return `True` if `a` is a Z3 finite-domain expression. 7817  >>> s = FiniteDomainSort('S', 100) 7818  >>> b = Const('b', s) 7819  >>> is_finite_domain(b) 7821  >>> is_finite_domain(Int('x')) 7824  return

isinstance(a, FiniteDomainRef)

7828  """Integer values.""" 7831  """Return a Z3 finite-domain numeral as a Python long (bignum) numeral. 7833  >>> s = FiniteDomainSort('S', 100) 7834  >>> v = FiniteDomainVal(3, s) 7843  """Return a Z3 finite-domain numeral as a Python string. 7845  >>> s = FiniteDomainSort('S', 100) 7846  >>> v = FiniteDomainVal(42, s) 7854  """Return a Z3 finite-domain value. If `ctx=None`, then the global context is used. 7856  >>> s = FiniteDomainSort('S', 256) 7857  >>> FiniteDomainVal(255, s) 7859  >>> FiniteDomainVal('100', s) 7869  """Return `True` if `a` is a Z3 finite-domain value. 7871  >>> s = FiniteDomainSort('S', 100) 7872  >>> b = Const('b', s) 7873  >>> is_finite_domain_value(b) 7875  >>> b = FiniteDomainVal(10, s) 7878  >>> is_finite_domain_value(b) 7892

self.

_opt

_opt = opt

7893

self.

_value

_value = value

7894

self.

_is_max

_is_max = is_max

7897

opt = self.

_opt

_opt

7901

opt = self.

_opt

_opt

7905

opt = self.

_opt

_opt

7909

opt = self.

_opt

_opt

7914  return

self.

upper

upper()

7916  return

self.

lower

lower()

7919  return "%s:%s"

% (self.

_value

_value, self.

_is_max

_is_max)

7925 def

_global_on_model(ctx):

7926

(fn, mdl) = _on_models[ctx]

7930

_on_model_eh = on_model_eh_type(_global_on_model)

7934  """Optimize API provides methods for solving using objective functions and weighted soft constraints""" 7938  if

optimize

is None

:

7949  if

self.

optimize

optimize

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_optimize_dec_ref

is not None

:

7954  def set

(self, *args, **keys):

7955  """Set a configuration option. 7956  The method `help()` return a string containing all available options. 7962  """Display a string describing all available options.""" 7966  """Return the parameter description set.""" 7970  """Assert constraints as background axioms for the optimize solver.""" 7971

args = _get_args(args)

7974  if

isinstance(arg, Goal)

or

isinstance(arg, AstVector):

7982  """Assert constraints as background axioms for the optimize solver. Alias for assert_expr.""" 7990  """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`. 7992  If `p` is a string, it will be automatically converted into a Boolean constant. 7997  >>> s.assert_and_track(x > 0, 'p1') 7998  >>> s.assert_and_track(x != 1, 'p2') 7999  >>> s.assert_and_track(x < 0, p3) 8000  >>> print(s.check()) 8002  >>> c = s.unsat_core() 8012  if

isinstance(p, str):

8014

_z3_assert(isinstance(a, BoolRef),

"Boolean expression expected"

)

8015

_z3_assert(isinstance(p, BoolRef)

and is_const

(p),

"Boolean expression expected"

)

8019  """Add soft constraint with optional weight and optional identifier. 8020  If no weight is supplied, then the penalty for violating the soft constraint 8022  Soft constraints are grouped by identifiers. Soft constraints that are 8023  added without identifiers are grouped by default. 8026

weight =

"%d"

% weight

8027  elif

isinstance(weight, float):

8028

weight =

"%f"

% weight

8029  if not

isinstance(weight, str):

8030  raise

Z3Exception(

"weight should be a string or an integer"

)

8038  if

sys.version_info.major >= 3

and

isinstance(arg, Iterable):

8039  return

[asoft(a)

for

a

in

arg]

8043  """initialize the solver's state by setting the initial value of var to value 8046

value = s.cast(value)

8050  """Add objective function to maximize.""" 8058  """Add objective function to minimize.""" 8066  """create a backtracking point for added rules, facts and assertions""" 8070  """restore to previously created backtracking point""" 8074  """Check consistency and produce optimal values.""" 8075

assumptions = _get_args(assumptions)

8076

num = len(assumptions)

8077

_assumptions = (Ast * num)()

8078  for

i

in range

(num):

8079

_assumptions[i] = assumptions[i].as_ast()

8083  """Return a string that describes why the last `check()` returned `unknown`.""" 8087  """Return a model for the last check().""" 8091  raise

Z3Exception(

"model is not available"

)

8097  if not

isinstance(obj, OptimizeObjective):

8098  raise

Z3Exception(

"Expecting objective handle returned by maximize/minimize"

)

8102  if not

isinstance(obj, OptimizeObjective):

8103  raise

Z3Exception(

"Expecting objective handle returned by maximize/minimize"

)

8107  if not

isinstance(obj, OptimizeObjective):

8108  raise

Z3Exception(

"Expecting objective handle returned by maximize/minimize"

)

8109  return

obj.lower_values()

8112  if not

isinstance(obj, OptimizeObjective):

8113  raise

Z3Exception(

"Expecting objective handle returned by maximize/minimize"

)

8114  return

obj.upper_values()

8117  """Parse assertions and objectives from a file""" 8121  """Parse assertions and objectives from a string""" 8125  """Return an AST vector containing all added constraints.""" 8129  """returns set of objective functions""" 8133  """Return a formatted string with all added rules and constraints.""" 8134  return

self.

sexpr

sexpr()

8137  """Return a formatted string (in Lisp-like format) with all added constraints. 8138  We say the string is in s-expression format. 8143  """Return statistics for the last check`. 8148  """Register a callback that is invoked with every incremental improvement to 8149  objective values. The callback takes a model as argument. 8150  The life-time of the model is limited to the callback so the 8151  model has to be (deep) copied if it is to be used after the callback 8153

id = len(_on_models) + 41

8155

_on_models[id] = (on_model, mdl)

8158

self.

ctx

ctx.ref(), self.

optimize

optimize, mdl.model, ctypes.c_void_p(id), _on_model_eh,

8168  """An ApplyResult object contains the subgoals produced by a tactic when applied to a goal. 8169  It also contains model and proof converters. 8181  if

self.

ctx

ctx.ref()

is not None and

Z3_apply_result_dec_ref

is not None

:

8185  """Return the number of subgoals in `self`. 8187  >>> a, b = Ints('a b') 8189  >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b) 8190  >>> t = Tactic('split-clause') 8194  >>> t = Then(Tactic('split-clause'), Tactic('split-clause')) 8197  >>> t = Then(Tactic('split-clause'), Tactic('split-clause'), Tactic('propagate-values')) 8204  """Return one of the subgoals stored in ApplyResult object `self`. 8206  >>> a, b = Ints('a b') 8208  >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b) 8209  >>> t = Tactic('split-clause') 8212  [a == 0, Or(b == 0, b == 1), a > b] 8214  [a == 1, Or(b == 0, b == 1), a > b] 8216  if

idx >= len(self):

8221  return

obj_to_string(self)

8224  """Return a textual representation of the s-expression representing the set of subgoals in `self`.""" 8228  """Return a Z3 expression consisting of all subgoals. 8233  >>> g.add(Or(x == 2, x == 3)) 8234  >>> r = Tactic('simplify')(g) 8236  [[Not(x <= 1), Or(x == 2, x == 3)]] 8238  And(Not(x <= 1), Or(x == 2, x == 3)) 8239  >>> r = Tactic('split-clause')(g) 8241  [[x > 1, x == 2], [x > 1, x == 3]] 8243  Or(And(x > 1, x == 2), And(x > 1, x == 3)) 8260  """Simplifiers act as pre-processing utilities for solvers. 8261  Build a custom simplifier and add it to a solver""" 8266  if

isinstance(simplifier, SimplifierObj):

8268  elif

isinstance(simplifier, list):

8269

simps = [

Simplifier

(s, ctx)

for

s

in

simplifier]

8270

self.

simplifier

simplifier = simps[0].simplifier

8271  for

i

in range

(1, len(simps)):

8277

_z3_assert(isinstance(simplifier, str),

"simplifier name expected"

)

8281  raise

Z3Exception(

"unknown simplifier '%s'"

% simplifier)

8288  if

self.

simplifier

simplifier

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_simplifier_dec_ref

is not None

:

8292  """Return a simplifier that uses the given configuration options""" 8297  """Return a solver that applies the simplification pre-processing specified by the simplifier""" 8301  """Display a string containing a description of the available options for the `self` simplifier.""" 8305  """Return the parameter description set.""" 8317  """Tactics transform, solver and/or simplify sets of constraints (Goal). 8318  A Tactic can be converted into a Solver using the method solver(). 8320  Several combinators are available for creating new tactics using the built-in ones: 8321  Then(), OrElse(), FailIf(), Repeat(), When(), Cond(). 8327  if

isinstance(tactic, TacticObj):

8328

self.

tactic

tactic = tactic

8331

_z3_assert(isinstance(tactic, str),

"tactic name expected"

)

8335  raise

Z3Exception(

"unknown tactic '%s'"

% tactic)

8342  if

self.

tactic

tactic

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_tactic_dec_ref

is not None

:

8346  """Create a solver using the tactic `self`. 8348  The solver supports the methods `push()` and `pop()`, but it 8349  will always solve each `check()` from scratch. 8351  >>> t = Then('simplify', 'nlsat') 8354  >>> s.add(x**2 == 2, x > 0) 8362  def apply

(self, goal, *arguments, **keywords):

8363  """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options. 8365  >>> x, y = Ints('x y') 8366  >>> t = Tactic('solve-eqs') 8367  >>> t.apply(And(x == 0, y >= x + 1)) 8371

_z3_assert(isinstance(goal, (Goal, BoolRef)),

"Z3 Goal or Boolean expressions expected"

)

8372

goal = _to_goal(goal)

8373  if

len(arguments) > 0

or

len(keywords) > 0:

8380  """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options. 8382  >>> x, y = Ints('x y') 8383  >>> t = Tactic('solve-eqs') 8384  >>> t(And(x == 0, y >= x + 1)) 8387  return

self.

apply

apply(goal, *arguments, **keywords)

8390  """Display a string containing a description of the available options for the `self` tactic.""" 8394  """Return the parameter description set.""" 8399  if

isinstance(a, BoolRef):

8400

goal =

Goal

(ctx=a.ctx)

8407 def

_to_tactic(t, ctx=None):

8408  if

isinstance(t, Tactic):

8414 def

_and_then(t1, t2, ctx=None):

8415

t1 = _to_tactic(t1, ctx)

8416

t2 = _to_tactic(t2, ctx)

8418

_z3_assert(t1.ctx == t2.ctx,

"Context mismatch"

)

8422 def

_or_else(t1, t2, ctx=None):

8423

t1 = _to_tactic(t1, ctx)

8424

t2 = _to_tactic(t2, ctx)

8426

_z3_assert(t1.ctx == t2.ctx,

"Context mismatch"

)

8431  """Return a tactic that applies the tactics in `*ts` in sequence. 8433  >>> x, y = Ints('x y') 8434  >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs')) 8435  >>> t(And(x == 0, y > x + 1)) 8437  >>> t(And(x == 0, y > x + 1)).as_expr() 8441

_z3_assert(len(ts) >= 2,

"At least two arguments expected"

)

8442

ctx = ks.get(

"ctx"

,

None

)

8445  for

i

in range

(num - 1):

8446

r = _and_then(r, ts[i + 1], ctx)

8451  """Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks). 8453  >>> x, y = Ints('x y') 8454  >>> t = Then(Tactic('simplify'), Tactic('solve-eqs')) 8455  >>> t(And(x == 0, y > x + 1)) 8457  >>> t(And(x == 0, y > x + 1)).as_expr() 8464  """Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail). 8467  >>> t = OrElse(Tactic('split-clause'), Tactic('skip')) 8468  >>> # Tactic split-clause fails if there is no clause in the given goal. 8471  >>> t(Or(x == 0, x == 1)) 8472  [[x == 0], [x == 1]] 8475

_z3_assert(len(ts) >= 2,

"At least two arguments expected"

)

8476

ctx = ks.get(

"ctx"

,

None

)

8479  for

i

in range

(num - 1):

8480

r = _or_else(r, ts[i + 1], ctx)

8485  """Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail). 8488  >>> t = ParOr(Tactic('simplify'), Tactic('fail')) 8493

_z3_assert(len(ts) >= 2,

"At least two arguments expected"

)

8494

ctx = _get_ctx(ks.get(

"ctx"

,

None

))

8495

ts = [_to_tactic(t, ctx)

for

t

in

ts]

8497

_args = (TacticObj * sz)()

8498  for

i

in range

(sz):

8499

_args[i] = ts[i].tactic

8504  """Return a tactic that applies t1 and then t2 to every subgoal produced by t1. 8505  The subgoals are processed in parallel. 8507  >>> x, y = Ints('x y') 8508  >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values')) 8509  >>> t(And(Or(x == 1, x == 2), y == x + 1)) 8510  [[x == 1, y == 2], [x == 2, y == 3]] 8512

t1 = _to_tactic(t1, ctx)

8513

t2 = _to_tactic(t2, ctx)

8515

_z3_assert(t1.ctx == t2.ctx,

"Context mismatch"

)

8520  """Alias for ParThen(t1, t2, ctx).""" 8525  """Return a tactic that applies tactic `t` using the given configuration options. 8527  >>> x, y = Ints('x y') 8528  >>> t = With(Tactic('simplify'), som=True) 8529  >>> t((x + 1)*(y + 2) == 0) 8530  [[2*x + y + x*y == -2]] 8532

ctx = keys.pop(

"ctx"

,

None

)

8533

t = _to_tactic(t, ctx)

8539  """Return a tactic that applies tactic `t` using the given configuration options. 8541  >>> x, y = Ints('x y') 8543  >>> p.set("som", True) 8544  >>> t = WithParams(Tactic('simplify'), p) 8545  >>> t((x + 1)*(y + 2) == 0) 8546  [[2*x + y + x*y == -2]] 8548

t = _to_tactic(t,

None

)

8553  """Return a tactic that keeps applying `t` until the goal is not modified anymore 8554  or the maximum number of iterations `max` is reached. 8556  >>> x, y = Ints('x y') 8557  >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y) 8558  >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip'))) 8560  >>> for subgoal in r: print(subgoal) 8561  [x == 0, y == 0, x > y] 8562  [x == 0, y == 1, x > y] 8563  [x == 1, y == 0, x > y] 8564  [x == 1, y == 1, x > y] 8565  >>> t = Then(t, Tactic('propagate-values')) 8569

t = _to_tactic(t, ctx)

8574  """Return a tactic that applies `t` to a given goal for `ms` milliseconds. 8576  If `t` does not terminate in `ms` milliseconds, then it fails. 8578

t = _to_tactic(t, ctx)

8583  """Return a list of all available tactics in Z3. 8586  >>> l.count('simplify') == 1 8594  """Return a short description for the tactic named `name`. 8596  >>> d = tactic_description('simplify') 8603  """Display a (tabular) description of all available tactics in Z3.""" 8606

print(

'<table border="1" cellpadding="2" cellspacing="0">'

)

8609

print(

'<tr style="background-color:#CFCFCF">'

)

8614

print(

"<td>%s</td><td>%s</td></tr>"

% (t, insert_line_breaks(

tactic_description

(t), 40)))

8622  """Probes are used to inspect a goal (aka problem) and collect information that may be used 8623  to decide which solver and/or preprocessing step will be used. 8629  if

isinstance(probe, ProbeObj):

8630

self.

probe

probe = probe

8631  elif

isinstance(probe, float):

8633  elif

_is_int(probe):

8635  elif

isinstance(probe, bool):

8642

_z3_assert(isinstance(probe, str),

"probe name expected"

)

8646  raise

Z3Exception(

"unknown probe '%s'"

% probe)

8653  if

self.

probe

probe

is not None and

self.

ctx

ctx.ref()

is not None and

Z3_probe_dec_ref

is not None

:

8657  """Return a probe that evaluates to "true" when the value returned by `self` 8658  is less than the value returned by `other`. 8660  >>> p = Probe('size') < 10 8671  """Return a probe that evaluates to "true" when the value returned by `self` 8672  is greater than the value returned by `other`. 8674  >>> p = Probe('size') > 10 8685  """Return a probe that evaluates to "true" when the value returned by `self` 8686  is less than or equal to the value returned by `other`. 8688  >>> p = Probe('size') <= 2 8699  """Return a probe that evaluates to "true" when the value returned by `self` 8700  is greater than or equal to the value returned by `other`. 8702  >>> p = Probe('size') >= 2 8713  """Return a probe that evaluates to "true" when the value returned by `self` 8714  is equal to the value returned by `other`. 8716  >>> p = Probe('size') == 2 8727  """Return a probe that evaluates to "true" when the value returned by `self` 8728  is not equal to the value returned by `other`. 8730  >>> p = Probe('size') != 2 8738

p = self.

__eq__

__eq__(other)

8742  """Evaluate the probe `self` in the given goal. 8744  >>> p = Probe('size') 8754  >>> p = Probe('num-consts') 8757  >>> p = Probe('is-propositional') 8760  >>> p = Probe('is-qflia') 8765

_z3_assert(isinstance(goal, (Goal, BoolRef)),

"Z3 Goal or Boolean expression expected"

)

8766

goal = _to_goal(goal)

8771  """Return `True` if `p` is a Z3 probe. 8773  >>> is_probe(Int('x')) 8775  >>> is_probe(Probe('memory')) 8778  return

isinstance(p, Probe)

8781 def

_to_probe(p, ctx=None):

8785  return Probe

(p, ctx)

8789  """Return a list of all available probes in Z3. 8792  >>> l.count('memory') == 1 8800  """Return a short description for the probe named `name`. 8802  >>> d = probe_description('memory') 8809  """Display a (tabular) description of all available probes in Z3.""" 8812

print(

'<table border="1" cellpadding="2" cellspacing="0">'

)

8815

print(

'<tr style="background-color:#CFCFCF">'

)

8820

print(

"<td>%s</td><td>%s</td></tr>"

% (p, insert_line_breaks(

probe_description

(p), 40)))

8827 def

_probe_nary(f, args, ctx):

8829

_z3_assert(len(args) > 0,

"At least one argument expected"

)

8831

r = _to_probe(args[0], ctx)

8832  for

i

in range

(num - 1):

8833

r =

Probe

(f(ctx.ref(), r.probe, _to_probe(args[i + 1], ctx).probe), ctx)

8837 def

_probe_and(args, ctx):

8838  return

_probe_nary(Z3_probe_and, args, ctx)

8841 def

_probe_or(args, ctx):

8842  return

_probe_nary(Z3_probe_or, args, ctx)

8846  """Return a tactic that fails if the probe `p` evaluates to true. 8847  Otherwise, it returns the input goal unmodified. 8849  In the following example, the tactic applies 'simplify' if and only if there are 8850  more than 2 constraints in the goal. 8852  >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify')) 8853  >>> x, y = Ints('x y') 8859  >>> g.add(x == y + 1) 8861  [[Not(x <= 0), Not(y <= 0), x == 1 + y]] 8863

p = _to_probe(p, ctx)

8868  """Return a tactic that applies tactic `t` only if probe `p` evaluates to true. 8869  Otherwise, it returns the input goal unmodified. 8871  >>> t = When(Probe('size') > 2, Tactic('simplify')) 8872  >>> x, y = Ints('x y') 8878  >>> g.add(x == y + 1) 8880  [[Not(x <= 0), Not(y <= 0), x == 1 + y]] 8882

p = _to_probe(p, ctx)

8883

t = _to_tactic(t, ctx)

8888  """Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise. 8890  >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt')) 8892

p = _to_probe(p, ctx)

8893

t1 = _to_tactic(t1, ctx)

8894

t2 = _to_tactic(t2, ctx)

8905  """Simplify the expression `a` using the given options. 8907  This function has many options. Use `help_simplify` to obtain the complete list. 8911  >>> simplify(x + 1 + y + x + 1) 8913  >>> simplify((x + 1)*(y + 1), som=True) 8915  >>> simplify(Distinct(x, y, 1), blast_distinct=True) 8916  And(Not(x == y), Not(x == 1), Not(y == 1)) 8917  >>> simplify(And(x == 0, y == 1), elim_and=True) 8918  Not(Or(Not(x == 0), Not(y == 1))) 8921

_z3_assert(

is_expr

(a),

"Z3 expression expected"

)

8922  if

len(arguments) > 0

or

len(keywords) > 0:

8924  return

_to_expr_ref(

Z3_simplify_ex

(a.ctx_ref(), a.as_ast(), p.params), a.ctx)

8926  return

_to_expr_ref(

Z3_simplify

(a.ctx_ref(), a.as_ast()), a.ctx)

8930  """Return a string describing all options available for Z3 `simplify` procedure.""" 8935  """Return the set of parameter descriptions for Z3 `simplify` procedure.""" 8940  """Apply substitution m on t, m is a list of pairs of the form (from, to). 8941  Every occurrence in t of from is replaced with to. 8945  >>> substitute(x + 1, (x, y + 1)) 8947  >>> f = Function('f', IntSort(), IntSort()) 8948  >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1))) 8951  if

isinstance(m, tuple):

8953  if

isinstance(m1, list)

and

all(isinstance(p, tuple)

for

p

in

m1):

8956

_z3_assert(

is_expr

(t),

"Z3 expression expected"

)

8958

all([isinstance(p, tuple)

and is_expr

(p[0])

and is_expr

(p[1])

for

p

in

m]),

8959  "Z3 invalid substitution, expression pairs expected."

)

8961

all([p[0].sort().

eq

(p[1].sort())

for

p

in

m]),

8962  'Z3 invalid substitution, mismatching "from" and "to" sorts.'

)

8964

_from = (Ast * num)()

8966  for

i

in range

(num):

8967

_from[i] = m[i][0].as_ast()

8968

_to[i] = m[i][1].as_ast()

8969  return

_to_expr_ref(

Z3_substitute

(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)

8973  """Substitute the free variables in t with the expression in m. 8975  >>> v0 = Var(0, IntSort()) 8976  >>> v1 = Var(1, IntSort()) 8978  >>> f = Function('f', IntSort(), IntSort(), IntSort()) 8979  >>> # replace v0 with x+1 and v1 with x 8980  >>> substitute_vars(f(v0, v1), x + 1, x) 8984

_z3_assert(

is_expr

(t),

"Z3 expression expected"

)

8985

_z3_assert(all([

is_expr

(n)

for

n

in

m]),

"Z3 invalid substitution, list of expressions expected."

)

8988  for

i

in range

(num):

8989

_to[i] = m[i].as_ast()

8993  """Apply substitution m on t, m is a list of pairs of a function and expression (from, to) 8994  Every occurrence in to of the function from is replaced with the expression to. 8995  The expression to can have free variables, that refer to the arguments of from. 8998  if

isinstance(m, tuple):

9000  if

isinstance(m1, list)

and

all(isinstance(p, tuple)

for

p

in

m1):

9003

_z3_assert(

is_expr

(t),

"Z3 expression expected"

)

9004

_z3_assert(all([isinstance(p, tuple)

and is_func_decl

(p[0])

and is_expr

(p[1])

for

p

in

m]),

"Z3 invalid substitution, function pairs expected."

)

9006

_from = (FuncDecl * num)()

9008  for

i

in range

(num):

9009

_from[i] = m[i][0].as_func_decl()

9010

_to[i] = m[i][1].as_ast()

9011  return

_to_expr_ref(

Z3_substitute_funs

(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)

9015  """Create the sum of the Z3 expressions. 9017  >>> a, b, c = Ints('a b c') 9022  >>> A = IntVector('a', 5) 9024  a__0 + a__1 + a__2 + a__3 + a__4 9026

args = _get_args(args)

9029

ctx = _ctx_from_ast_arg_list(args)

9031  return

_reduce(

lambda

a, b: a + b, args, 0)

9032

args = _coerce_expr_list(args, ctx)

9034  return

_reduce(

lambda

a, b: a + b, args, 0)

9036

_args, sz = _to_ast_array(args)

9041  """Create the product of the Z3 expressions. 9043  >>> a, b, c = Ints('a b c') 9044  >>> Product(a, b, c) 9046  >>> Product([a, b, c]) 9048  >>> A = IntVector('a', 5) 9050  a__0*a__1*a__2*a__3*a__4 9052

args = _get_args(args)

9055

ctx = _ctx_from_ast_arg_list(args)

9057  return

_reduce(

lambda

a, b: a * b, args, 1)

9058

args = _coerce_expr_list(args, ctx)

9060  return

_reduce(

lambda

a, b: a * b, args, 1)

9062

_args, sz = _to_ast_array(args)

9066  """Create the absolute value of an arithmetic expression""" 9067  return If

(arg > 0, arg, -arg)

9071  """Create an at-most Pseudo-Boolean k constraint. 9073  >>> a, b, c = Bools('a b c') 9074  >>> f = AtMost(a, b, c, 2) 9076

args = _get_args(args)

9078

_z3_assert(len(args) > 1,

"Non empty list of arguments expected"

)

9079

ctx = _ctx_from_ast_arg_list(args)

9081

_z3_assert(ctx

is not None

,

"At least one of the arguments must be a Z3 expression"

)

9082

args1 = _coerce_expr_list(args[:-1], ctx)

9084

_args, sz = _to_ast_array(args1)

9089  """Create an at-least Pseudo-Boolean k constraint. 9091  >>> a, b, c = Bools('a b c') 9092  >>> f = AtLeast(a, b, c, 2) 9094

args = _get_args(args)

9096

_z3_assert(len(args) > 1,

"Non empty list of arguments expected"

)

9097

ctx = _ctx_from_ast_arg_list(args)

9099

_z3_assert(ctx

is not None

,

"At least one of the arguments must be a Z3 expression"

)

9100

args1 = _coerce_expr_list(args[:-1], ctx)

9102

_args, sz = _to_ast_array(args1)

9106 def

_reorder_pb_arg(arg):

9108  if not

_is_int(b)

and

_is_int(a):

9113 def

_pb_args_coeffs(args, default_ctx=None):

9114

args = _get_args_ast_list(args)

9116  return

_get_ctx(default_ctx), 0, (Ast * 0)(), (ctypes.c_int * 0)()

9117

args = [_reorder_pb_arg(arg)

for

arg

in

args]

9118

args, coeffs = zip(*args)

9120

_z3_assert(len(args) > 0,

"Non empty list of arguments expected"

)

9121

ctx = _ctx_from_ast_arg_list(args)

9123

_z3_assert(ctx

is not None

,

"At least one of the arguments must be a Z3 expression"

)

9124

args = _coerce_expr_list(args, ctx)

9125

_args, sz = _to_ast_array(args)

9126

_coeffs = (ctypes.c_int * len(coeffs))()

9127  for

i

in range

(len(coeffs)):

9128

_z3_check_cint_overflow(coeffs[i],

"coefficient"

)

9129

_coeffs[i] = coeffs[i]

9130  return

ctx, sz, _args, _coeffs, args

9134  """Create a Pseudo-Boolean inequality k constraint. 9136  >>> a, b, c = Bools('a b c') 9137  >>> f = PbLe(((a,1),(b,3),(c,2)), 3) 9139

_z3_check_cint_overflow(k,

"k"

)

9140

ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)

9145  """Create a Pseudo-Boolean inequality k constraint. 9147  >>> a, b, c = Bools('a b c') 9148  >>> f = PbGe(((a,1),(b,3),(c,2)), 3) 9150

_z3_check_cint_overflow(k,

"k"

)

9151

ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)

9156  """Create a Pseudo-Boolean equality k constraint. 9158  >>> a, b, c = Bools('a b c') 9159  >>> f = PbEq(((a,1),(b,3),(c,2)), 3) 9161

_z3_check_cint_overflow(k,

"k"

)

9162

ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)

9167  """Solve the constraints `*args`. 9169  This is a simple function for creating demonstrations. It creates a solver, 9170  configure it using the options in `keywords`, adds the constraints 9171  in `args`, and invokes check. 9174  >>> solve(a > 0, a < 2) 9177

show = keywords.pop(

"show"

,

False

)

9185

print(

"no solution"

)

9187

print(

"failed to solve"

)

9197  """Solve the constraints `*args` using solver `s`. 9199  This is a simple function for creating demonstrations. It is similar to `solve`, 9200  but it uses the given solver `s`. 9201  It configures solver `s` using the options in `keywords`, adds the constraints 9202  in `args`, and invokes check. 9204

show = keywords.pop(

"show"

,

False

)

9206

_z3_assert(isinstance(s, Solver),

"Solver object expected"

)

9214

print(

"no solution"

)

9216

print(

"failed to solve"

)

9223

print(

"Solution:"

)

9227 def prove

(claim, show=False, **keywords):

9228  """Try to prove the given claim. 9230  This is a simple function for creating demonstrations. It tries to prove 9231  `claim` by showing the negation is unsatisfiable. 9233  >>> p, q = Bools('p q') 9234  >>> prove(Not(And(p, q)) == Or(Not(p), Not(q))) 9238

_z3_assert(

is_bool

(claim),

"Z3 Boolean expression expected"

)

9248

print(

"failed to prove"

)

9251

print(

"counterexample"

)

9255 def

_solve_html(*args, **keywords):

9256  """Version of function `solve` that renders HTML output.""" 9257

show = keywords.pop(

"show"

,

False

)

9262

print(

"<b>Problem:</b>"

)

9266

print(

"<b>no solution</b>"

)

9268

print(

"<b>failed to solve</b>"

)

9275

print(

"<b>Solution:</b>"

)

9279 def

_solve_using_html(s, *args, **keywords):

9280  """Version of function `solve_using` that renders HTML.""" 9281

show = keywords.pop(

"show"

,

False

)

9283

_z3_assert(isinstance(s, Solver),

"Solver object expected"

)

9287

print(

"<b>Problem:</b>"

)

9291

print(

"<b>no solution</b>"

)

9293

print(

"<b>failed to solve</b>"

)

9300

print(

"<b>Solution:</b>"

)

9304 def

_prove_html(claim, show=False, **keywords):

9305  """Version of function `prove` that renders HTML.""" 9307

_z3_assert(

is_bool

(claim),

"Z3 Boolean expression expected"

)

9315

print(

"<b>proved</b>"

)

9317

print(

"<b>failed to prove</b>"

)

9320

print(

"<b>counterexample</b>"

)

9324 def

_dict2sarray(sorts, ctx):

9326

_names = (Symbol * sz)()

9327

_sorts = (Sort * sz)()

9332

_z3_assert(isinstance(k, str),

"String expected"

)

9333

_z3_assert(

is_sort

(v),

"Z3 sort expected"

)

9337  return

sz, _names, _sorts

9340 def

_dict2darray(decls, ctx):

9342

_names = (Symbol * sz)()

9343

_decls = (FuncDecl * sz)()

9348

_z3_assert(isinstance(k, str),

"String expected"

)

9352

_decls[i] = v.decl().ast

9356  return

sz, _names, _decls

9365  if

self.

ctx

ctx.ref()

is not None and

self.

pctx

pctx

is not None and

Z3_parser_context_dec_ref

is not None

:

9367

self.

pctx

pctx =

None 9379  """Parse a string in SMT 2.0 format using the given sorts and decls. 9381  The arguments sorts and decls are Python dictionaries used to initialize 9382  the symbol table used for the SMT 2.0 parser. 9384  >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))') 9386  >>> x, y = Ints('x y') 9387  >>> f = Function('f', IntSort(), IntSort()) 9388  >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f}) 9390  >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() }) 9394

ssz, snames, ssorts = _dict2sarray(sorts, ctx)

9395

dsz, dnames, ddecls = _dict2darray(decls, ctx)

9400  """Parse a file in SMT 2.0 format using the given sorts and decls. 9402  This function is similar to parse_smt2_string(). 9405

ssz, snames, ssorts = _dict2sarray(sorts, ctx)

9406

dsz, dnames, ddecls = _dict2darray(decls, ctx)

9418

_dflt_rounding_mode = Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN

9419

_dflt_fpsort_ebits = 11

9420

_dflt_fpsort_sbits = 53

9424  """Retrieves the global default rounding mode.""" 9425  global

_dflt_rounding_mode

9426  if

_dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO:

9428  elif

_dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE:

9430  elif

_dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE:

9432  elif

_dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN:

9434  elif

_dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY:

9438

_ROUNDING_MODES = frozenset({

9439

Z3_OP_FPA_RM_TOWARD_ZERO,

9440

Z3_OP_FPA_RM_TOWARD_NEGATIVE,

9441

Z3_OP_FPA_RM_TOWARD_POSITIVE,

9442

Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,

9443

Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY

9448  global

_dflt_rounding_mode

9450

_dflt_rounding_mode = rm.decl().kind()

9452

_z3_assert(_dflt_rounding_mode

in

_ROUNDING_MODES,

"illegal rounding mode"

)

9453

_dflt_rounding_mode = rm

9457  return FPSort

(_dflt_fpsort_ebits, _dflt_fpsort_sbits, ctx)

9461  global

_dflt_fpsort_ebits

9462  global

_dflt_fpsort_sbits

9463

_dflt_fpsort_ebits = ebits

9464

_dflt_fpsort_sbits = sbits

9467 def

_dflt_rm(ctx=None):

9471 def

_dflt_fps(ctx=None):

9475 def

_coerce_fp_expr_list(alist, ctx):

9476

first_fp_sort =

None 9479  if

first_fp_sort

is None

:

9480

first_fp_sort = a.sort()

9481  elif

first_fp_sort == a.sort():

9486

first_fp_sort =

None 9490  for

i

in range

(len(alist)):

9492

is_repr = isinstance(a, str)

and

a.contains(

"2**("

)

and

a.endswith(

")"

)

9493  if

is_repr

or

_is_int(a)

or

isinstance(a, (float, bool)):

9494

r.append(

FPVal

(a,

None

, first_fp_sort, ctx))

9497  return

_coerce_expr_list(r, ctx)

9503  """Floating-point sort.""" 9506  """Retrieves the number of bits reserved for the exponent in the FloatingPoint sort `self`. 9507  >>> b = FPSort(8, 24) 9514  """Retrieves the number of bits reserved for the significand in the FloatingPoint sort `self`. 9515  >>> b = FPSort(8, 24) 9522  """Try to cast `val` as a floating-point expression. 9523  >>> b = FPSort(8, 24) 9526  >>> b.cast(1.0).sexpr() 9527  '(fp #b0 #x7f #b00000000000000000000000)' 9531

_z3_assert(self.

ctxctx

ctx == val.ctx,

"Context mismatch"

)

9538  """Floating-point 16-bit (half) sort.""" 9544  """Floating-point 16-bit (half) sort.""" 9550  """Floating-point 32-bit (single) sort.""" 9556  """Floating-point 32-bit (single) sort.""" 9562  """Floating-point 64-bit (double) sort.""" 9568  """Floating-point 64-bit (double) sort.""" 9574  """Floating-point 128-bit (quadruple) sort.""" 9580  """Floating-point 128-bit (quadruple) sort.""" 9586  """"Floating-point rounding mode sort.""" 9590  """Return True if `s` is a Z3 floating-point sort. 9592  >>> is_fp_sort(FPSort(8, 24)) 9594  >>> is_fp_sort(IntSort()) 9597  return

isinstance(s, FPSortRef)

9601  """Return True if `s` is a Z3 floating-point rounding mode sort. 9603  >>> is_fprm_sort(FPSort(8, 24)) 9605  >>> is_fprm_sort(RNE().sort()) 9608  return

isinstance(s, FPRMSortRef)

9614  """Floating-point expressions.""" 9617  """Return the sort of the floating-point expression `self`. 9619  >>> x = FP('1.0', FPSort(8, 24)) 9622  >>> x.sort() == FPSort(8, 24) 9628  """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`. 9629  >>> b = FPSort(8, 24) 9636  """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`. 9637  >>> b = FPSort(8, 24) 9644  """Return a Z3 floating point expression as a Python string.""" 9648  return fpLEQ

(self, other, self.

ctx

ctx)

9651  return fpLT

(self, other, self.

ctx

ctx)

9654  return fpGEQ

(self, other, self.

ctx

ctx)

9657  return fpGT

(self, other, self.

ctx

ctx)

9660  """Create the Z3 expression `self + other`. 9662  >>> x = FP('x', FPSort(8, 24)) 9663  >>> y = FP('y', FPSort(8, 24)) 9669

[a, b] = _coerce_fp_expr_list([self, other], self.

ctx

ctx)

9670  return fpAdd

(_dflt_rm(), a, b, self.

ctx

ctx)

9673  """Create the Z3 expression `other + self`. 9675  >>> x = FP('x', FPSort(8, 24)) 9679

[a, b] = _coerce_fp_expr_list([other, self], self.

ctx

ctx)

9680  return fpAdd

(_dflt_rm(), a, b, self.

ctx

ctx)

9683  """Create the Z3 expression `self - other`. 9685  >>> x = FP('x', FPSort(8, 24)) 9686  >>> y = FP('y', FPSort(8, 24)) 9692

[a, b] = _coerce_fp_expr_list([self, other], self.

ctx

ctx)

9693  return fpSub

(_dflt_rm(), a, b, self.

ctx

ctx)

9696  """Create the Z3 expression `other - self`. 9698  >>> x = FP('x', FPSort(8, 24)) 9702

[a, b] = _coerce_fp_expr_list([other, self], self.

ctx

ctx)

9703  return fpSub

(_dflt_rm(), a, b, self.

ctx

ctx)

9706  """Create the Z3 expression `self * other`. 9708  >>> x = FP('x', FPSort(8, 24)) 9709  >>> y = FP('y', FPSort(8, 24)) 9717

[a, b] = _coerce_fp_expr_list([self, other], self.

ctx

ctx)

9718  return fpMul

(_dflt_rm(), a, b, self.

ctx

ctx)

9721  """Create the Z3 expression `other * self`. 9723  >>> x = FP('x', FPSort(8, 24)) 9724  >>> y = FP('y', FPSort(8, 24)) 9730

[a, b] = _coerce_fp_expr_list([other, self], self.

ctx

ctx)

9731  return fpMul

(_dflt_rm(), a, b, self.

ctx

ctx)

9734  """Create the Z3 expression `+self`.""" 9738  """Create the Z3 expression `-self`. 9740  >>> x = FP('x', Float32()) 9747  """Create the Z3 expression `self / other`. 9749  >>> x = FP('x', FPSort(8, 24)) 9750  >>> y = FP('y', FPSort(8, 24)) 9758

[a, b] = _coerce_fp_expr_list([self, other], self.

ctx

ctx)

9759  return fpDiv

(_dflt_rm(), a, b, self.

ctx

ctx)

9762  """Create the Z3 expression `other / self`. 9764  >>> x = FP('x', FPSort(8, 24)) 9765  >>> y = FP('y', FPSort(8, 24)) 9771

[a, b] = _coerce_fp_expr_list([other, self], self.

ctx

ctx)

9772  return fpDiv

(_dflt_rm(), a, b, self.

ctx

ctx)

9775  """Create the Z3 expression division `self / other`.""" 9776  return

self.

__div__

__div__(other)

9779  """Create the Z3 expression division `other / self`.""" 9780  return

self.

__rdiv__

__rdiv__(other)

9783  """Create the Z3 expression mod `self % other`.""" 9784  return fpRem

(self, other)

9787  """Create the Z3 expression mod `other % self`.""" 9788  return fpRem

(other, self)

9792  """Floating-point rounding mode expressions""" 9795  """Return a Z3 floating point expression as a Python string.""" 9850  """Return `True` if `a` is a Z3 floating-point rounding mode expression. 9859  return

isinstance(a, FPRMRef)

9863  """Return `True` if `a` is a Z3 floating-point rounding mode numeral value.""" 9864  return is_fprm

(a)

and

_is_numeral(a.ctx, a.ast)

9870  """The sign of the numeral. 9872  >>> x = FPVal(+1.0, FPSort(8, 24)) 9875  >>> x = FPVal(-1.0, FPSort(8, 24)) 9881

num = (ctypes.c_int)()

9884  raise

Z3Exception(

"error retrieving the sign of a numeral."

)

9885  return

num.value != 0

9887  """The sign of a floating-point numeral as a bit-vector expression. 9889  Remark: NaN's are invalid arguments. 9895  """The significand of the numeral. 9897  >>> x = FPVal(2.5, FPSort(8, 24)) 9905  """The significand of the numeral as a long. 9907  >>> x = FPVal(2.5, FPSort(8, 24)) 9908  >>> x.significand_as_long() 9913

ptr = (ctypes.c_ulonglong * 1)()

9915  raise

Z3Exception(

"error retrieving the significand of a numeral."

)

9918  """The significand of the numeral as a bit-vector expression. 9920  Remark: NaN are invalid arguments. 9926  """The exponent of the numeral. 9928  >>> x = FPVal(2.5, FPSort(8, 24)) 9936  """The exponent of the numeral as a long. 9938  >>> x = FPVal(2.5, FPSort(8, 24)) 9939  >>> x.exponent_as_long() 9944

ptr = (ctypes.c_longlong * 1)()

9946  raise

Z3Exception(

"error retrieving the exponent of a numeral."

)

9949  """The exponent of the numeral as a bit-vector expression. 9951  Remark: NaNs are invalid arguments. 9957  """Indicates whether the numeral is a NaN.""" 9962  """Indicates whether the numeral is +oo or -oo.""" 9967  """Indicates whether the numeral is +zero or -zero.""" 9972  """Indicates whether the numeral is normal.""" 9977  """Indicates whether the numeral is subnormal.""" 9982  """Indicates whether the numeral is positive.""" 9987  """Indicates whether the numeral is negative.""" 9993  The string representation of the numeral. 9995  >>> x = FPVal(20, FPSort(8, 24)) 10002  return

(

"FPVal(%s, %s)"

% (s, self.

sortsort

sort()))

10006  """Return `True` if `a` is a Z3 floating-point expression. 10008  >>> b = FP('b', FPSort(8, 24)) 10013  >>> is_fp(Int('x')) 10016  return

isinstance(a, FPRef)

10020  """Return `True` if `a` is a Z3 floating-point numeral value. 10022  >>> b = FP('b', FPSort(8, 24)) 10025  >>> b = FPVal(1.0, FPSort(8, 24)) 10031  return is_fp

(a)

and

_is_numeral(a.ctx, a.ast)

10035  """Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used. 10037  >>> Single = FPSort(8, 24) 10038  >>> Double = FPSort(11, 53) 10041  >>> x = Const('x', Single) 10042  >>> eq(x, FP('x', FPSort(8, 24))) 10045

ctx = _get_ctx(ctx)

10049 def

_to_float_str(val, exp=0):

10050  if

isinstance(val, float):

10051  if

math.isnan(val):

10054

sone = math.copysign(1.0, val)

10059  elif

val == float(

"+inf"

):

10061  elif

val == float(

"-inf"

):

10064

v = val.as_integer_ratio()

10067

rvs = str(num) +

"/"

+ str(den)

10068

res = rvs +

"p"

+ _to_int_str(exp)

10069  elif

isinstance(val, bool):

10076  elif

isinstance(val, str):

10077

inx = val.find(

"*(2**"

)

10080  elif

val[-1] ==

")"

:

10082

exp = str(int(val[inx + 5:-1]) + int(exp))

10084

_z3_assert(

False

,

"String does not have floating-point numeral form."

)

10086

_z3_assert(

False

,

"Python value cannot be used to create floating-point numerals."

)

10090  return

res +

"p"

+ exp

10094  """Create a Z3 floating-point NaN term. 10096  >>> s = FPSort(8, 24) 10097  >>> set_fpa_pretty(True) 10100  >>> pb = get_fpa_pretty() 10101  >>> set_fpa_pretty(False) 10103  fpNaN(FPSort(8, 24)) 10104  >>> set_fpa_pretty(pb) 10106

_z3_assert(isinstance(s, FPSortRef),

"sort mismatch"

)

10111  """Create a Z3 floating-point +oo term. 10113  >>> s = FPSort(8, 24) 10114  >>> pb = get_fpa_pretty() 10115  >>> set_fpa_pretty(True) 10116  >>> fpPlusInfinity(s) 10118  >>> set_fpa_pretty(False) 10119  >>> fpPlusInfinity(s) 10120  fpPlusInfinity(FPSort(8, 24)) 10121  >>> set_fpa_pretty(pb) 10123

_z3_assert(isinstance(s, FPSortRef),

"sort mismatch"

)

10128  """Create a Z3 floating-point -oo term.""" 10129

_z3_assert(isinstance(s, FPSortRef),

"sort mismatch"

)

10134  """Create a Z3 floating-point +oo or -oo term.""" 10135

_z3_assert(isinstance(s, FPSortRef),

"sort mismatch"

)

10136

_z3_assert(isinstance(negative, bool),

"expected Boolean flag"

)

10141  """Create a Z3 floating-point +0.0 term.""" 10142

_z3_assert(isinstance(s, FPSortRef),

"sort mismatch"

)

10147  """Create a Z3 floating-point -0.0 term.""" 10148

_z3_assert(isinstance(s, FPSortRef),

"sort mismatch"

)

10153  """Create a Z3 floating-point +0.0 or -0.0 term.""" 10154

_z3_assert(isinstance(s, FPSortRef),

"sort mismatch"

)

10155

_z3_assert(isinstance(negative, bool),

"expected Boolean flag"

)

10159 def FPVal

(sig, exp=None, fps=None, ctx=None):

10160  """Return a floating-point value of value `val` and sort `fps`. 10161  If `ctx=None`, then the global context is used. 10163  >>> v = FPVal(20.0, FPSort(8, 24)) 10166  >>> print("0x%.8x" % v.exponent_as_long(False)) 10168  >>> v = FPVal(2.25, FPSort(8, 24)) 10171  >>> v = FPVal(-2.25, FPSort(8, 24)) 10174  >>> FPVal(-0.0, FPSort(8, 24)) 10176  >>> FPVal(0.0, FPSort(8, 24)) 10178  >>> FPVal(+0.0, FPSort(8, 24)) 10181

ctx = _get_ctx(ctx)

10186

fps = _dflt_fps(ctx)

10187

_z3_assert(

is_fp_sort

(fps),

"sort mismatch"

)

10190

val = _to_float_str(sig)

10191  if

val ==

"NaN" or

val ==

"nan"

:

10193  elif

val ==

"-0.0"

:

10195  elif

val ==

"0.0" or

val ==

"+0.0"

:

10197  elif

val ==

"+oo" or

val ==

"+inf" or

val ==

"+Inf"

:

10199  elif

val ==

"-oo" or

val ==

"-inf" or

val ==

"-Inf"

:

10205 def FP

(name, fpsort, ctx=None):

10206  """Return a floating-point constant named `name`. 10207  `fpsort` is the floating-point sort. 10208  If `ctx=None`, then the global context is used. 10210  >>> x = FP('x', FPSort(8, 24)) 10217  >>> word = FPSort(8, 24) 10218  >>> x2 = FP('x', word) 10222  if

isinstance(fpsort, FPSortRef)

and

ctx

is None

:

10225

ctx = _get_ctx(ctx)

10229 def FPs

(names, fpsort, ctx=None):

10230  """Return an array of floating-point constants. 10232  >>> x, y, z = FPs('x y z', FPSort(8, 24)) 10239  >>> fpMul(RNE(), fpAdd(RNE(), x, y), z) 10242

ctx = _get_ctx(ctx)

10243  if

isinstance(names, str):

10244

names = names.split(

" "

)

10245  return

[

FP

(name, fpsort, ctx)

for

name

in

names]

10249  """Create a Z3 floating-point absolute value expression. 10251  >>> s = FPSort(8, 24) 10253  >>> x = FPVal(1.0, s) 10256  >>> y = FPVal(-20.0, s) 10260  fpAbs(-1.25*(2**4)) 10261  >>> fpAbs(-1.25*(2**4)) 10262  fpAbs(-1.25*(2**4)) 10263  >>> fpAbs(x).sort() 10266

ctx = _get_ctx(ctx)

10267

[a] = _coerce_fp_expr_list([a], ctx)

10272  """Create a Z3 floating-point addition expression. 10274  >>> s = FPSort(8, 24) 10279  >>> fpNeg(x).sort() 10282

ctx = _get_ctx(ctx)

10283

[a] = _coerce_fp_expr_list([a], ctx)

10287 def

_mk_fp_unary(f, rm, a, ctx):

10288

ctx = _get_ctx(ctx)

10289

[a] = _coerce_fp_expr_list([a], ctx)

10291

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression"

)

10292

_z3_assert(

is_fp

(a),

"Second argument must be a Z3 floating-point expression"

)

10293  return FPRef

(f(ctx.ref(), rm.as_ast(), a.as_ast()), ctx)

10296 def

_mk_fp_unary_pred(f, a, ctx):

10297

ctx = _get_ctx(ctx)

10298

[a] = _coerce_fp_expr_list([a], ctx)

10300

_z3_assert(

is_fp

(a),

"First argument must be a Z3 floating-point expression"

)

10301  return BoolRef

(f(ctx.ref(), a.as_ast()), ctx)

10304 def

_mk_fp_bin(f, rm, a, b, ctx):

10305

ctx = _get_ctx(ctx)

10306

[a, b] = _coerce_fp_expr_list([a, b], ctx)

10308

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression"

)

10309

_z3_assert(

is_fp

(a)

or is_fp

(b),

"Second or third argument must be a Z3 floating-point expression"

)

10310  return FPRef

(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast()), ctx)

10313 def

_mk_fp_bin_norm(f, a, b, ctx):

10314

ctx = _get_ctx(ctx)

10315

[a, b] = _coerce_fp_expr_list([a, b], ctx)

10317

_z3_assert(

is_fp

(a)

or is_fp

(b),

"First or second argument must be a Z3 floating-point expression"

)

10318  return FPRef

(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)

10321 def

_mk_fp_bin_pred(f, a, b, ctx):

10322

ctx = _get_ctx(ctx)

10323

[a, b] = _coerce_fp_expr_list([a, b], ctx)

10325

_z3_assert(

is_fp

(a)

or is_fp

(b),

"First or second argument must be a Z3 floating-point expression"

)

10326  return BoolRef

(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)

10329 def

_mk_fp_tern(f, rm, a, b, c, ctx):

10330

ctx = _get_ctx(ctx)

10331

[a, b, c] = _coerce_fp_expr_list([a, b, c], ctx)

10333

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression"

)

10335

c),

"Second, third or fourth argument must be a Z3 floating-point expression"

)

10336  return FPRef

(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)

10340  """Create a Z3 floating-point addition expression. 10342  >>> s = FPSort(8, 24) 10346  >>> fpAdd(rm, x, y) 10348  >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ 10350  >>> fpAdd(rm, x, y).sort() 10353  return

_mk_fp_bin(Z3_mk_fpa_add, rm, a, b, ctx)

10357  """Create a Z3 floating-point subtraction expression. 10359  >>> s = FPSort(8, 24) 10363  >>> fpSub(rm, x, y) 10365  >>> fpSub(rm, x, y).sort() 10368  return

_mk_fp_bin(Z3_mk_fpa_sub, rm, a, b, ctx)

10372  """Create a Z3 floating-point multiplication expression. 10374  >>> s = FPSort(8, 24) 10378  >>> fpMul(rm, x, y) 10380  >>> fpMul(rm, x, y).sort() 10383  return

_mk_fp_bin(Z3_mk_fpa_mul, rm, a, b, ctx)

10387  """Create a Z3 floating-point division expression. 10389  >>> s = FPSort(8, 24) 10393  >>> fpDiv(rm, x, y) 10395  >>> fpDiv(rm, x, y).sort() 10398  return

_mk_fp_bin(Z3_mk_fpa_div, rm, a, b, ctx)

10402  """Create a Z3 floating-point remainder expression. 10404  >>> s = FPSort(8, 24) 10409  >>> fpRem(x, y).sort() 10412  return

_mk_fp_bin_norm(Z3_mk_fpa_rem, a, b, ctx)

10416  """Create a Z3 floating-point minimum expression. 10418  >>> s = FPSort(8, 24) 10424  >>> fpMin(x, y).sort() 10427  return

_mk_fp_bin_norm(Z3_mk_fpa_min, a, b, ctx)

10431  """Create a Z3 floating-point maximum expression. 10433  >>> s = FPSort(8, 24) 10439  >>> fpMax(x, y).sort() 10442  return

_mk_fp_bin_norm(Z3_mk_fpa_max, a, b, ctx)

10446  """Create a Z3 floating-point fused multiply-add expression. 10448  return

_mk_fp_tern(Z3_mk_fpa_fma, rm, a, b, c, ctx)

10452  """Create a Z3 floating-point square root expression. 10454  return

_mk_fp_unary(Z3_mk_fpa_sqrt, rm, a, ctx)

10458  """Create a Z3 floating-point roundToIntegral expression. 10460  return

_mk_fp_unary(Z3_mk_fpa_round_to_integral, rm, a, ctx)

10464  """Create a Z3 floating-point isNaN expression. 10466  >>> s = FPSort(8, 24) 10472  return

_mk_fp_unary_pred(Z3_mk_fpa_is_nan, a, ctx)

10476  """Create a Z3 floating-point isInfinite expression. 10478  >>> s = FPSort(8, 24) 10483  return

_mk_fp_unary_pred(Z3_mk_fpa_is_infinite, a, ctx)

10487  """Create a Z3 floating-point isZero expression. 10489  return

_mk_fp_unary_pred(Z3_mk_fpa_is_zero, a, ctx)

10493  """Create a Z3 floating-point isNormal expression. 10495  return

_mk_fp_unary_pred(Z3_mk_fpa_is_normal, a, ctx)

10499  """Create a Z3 floating-point isSubnormal expression. 10501  return

_mk_fp_unary_pred(Z3_mk_fpa_is_subnormal, a, ctx)

10505  """Create a Z3 floating-point isNegative expression. 10507  return

_mk_fp_unary_pred(Z3_mk_fpa_is_negative, a, ctx)

10511  """Create a Z3 floating-point isPositive expression. 10513  return

_mk_fp_unary_pred(Z3_mk_fpa_is_positive, a, ctx)

10516 def

_check_fp_args(a, b):

10518

_z3_assert(

is_fp

(a)

or is_fp

(b),

"First or second argument must be a Z3 floating-point expression"

)

10522  """Create the Z3 floating-point expression `other < self`. 10524  >>> x, y = FPs('x y', FPSort(8, 24)) 10527  >>> (x < y).sexpr() 10530  return

_mk_fp_bin_pred(Z3_mk_fpa_lt, a, b, ctx)

10534  """Create the Z3 floating-point expression `other <= self`. 10536  >>> x, y = FPs('x y', FPSort(8, 24)) 10539  >>> (x <= y).sexpr() 10542  return

_mk_fp_bin_pred(Z3_mk_fpa_leq, a, b, ctx)

10546  """Create the Z3 floating-point expression `other > self`. 10548  >>> x, y = FPs('x y', FPSort(8, 24)) 10551  >>> (x > y).sexpr() 10554  return

_mk_fp_bin_pred(Z3_mk_fpa_gt, a, b, ctx)

10558  """Create the Z3 floating-point expression `other >= self`. 10560  >>> x, y = FPs('x y', FPSort(8, 24)) 10563  >>> (x >= y).sexpr() 10566  return

_mk_fp_bin_pred(Z3_mk_fpa_geq, a, b, ctx)

10570  """Create the Z3 floating-point expression `fpEQ(other, self)`. 10572  >>> x, y = FPs('x y', FPSort(8, 24)) 10575  >>> fpEQ(x, y).sexpr() 10578  return

_mk_fp_bin_pred(Z3_mk_fpa_eq, a, b, ctx)

10582  """Create the Z3 floating-point expression `Not(fpEQ(other, self))`. 10584  >>> x, y = FPs('x y', FPSort(8, 24)) 10587  >>> (x != y).sexpr() 10590  return Not

(

fpEQ

(a, b, ctx))

10594  """Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp. 10596  >>> s = FPSort(8, 24) 10597  >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23)) 10599  fpFP(1, 127, 4194304) 10600  >>> xv = FPVal(-1.5, s) 10603  >>> slvr = Solver() 10604  >>> slvr.add(fpEQ(x, xv)) 10607  >>> xv = FPVal(+1.5, s) 10610  >>> slvr = Solver() 10611  >>> slvr.add(fpEQ(x, xv)) 10615

_z3_assert(

is_bv

(sgn)

and is_bv

(exp)

and is_bv

(sig),

"sort mismatch"

)

10616

_z3_assert(sgn.sort().size() == 1,

"sort mismatch"

)

10617

ctx = _get_ctx(ctx)

10618

_z3_assert(ctx == sgn.ctx == exp.ctx == sig.ctx,

"context mismatch"

)

10623  """Create a Z3 floating-point conversion expression from other term sorts 10626  From a bit-vector term in IEEE 754-2008 format: 10627  >>> x = FPVal(1.0, Float32()) 10628  >>> x_bv = fpToIEEEBV(x) 10629  >>> simplify(fpToFP(x_bv, Float32())) 10632  From a floating-point term with different precision: 10633  >>> x = FPVal(1.0, Float32()) 10634  >>> x_db = fpToFP(RNE(), x, Float64()) 10639  >>> x_r = RealVal(1.5) 10640  >>> simplify(fpToFP(RNE(), x_r, Float32())) 10643  From a signed bit-vector term: 10644  >>> x_signed = BitVecVal(-5, BitVecSort(32)) 10645  >>> simplify(fpToFP(RNE(), x_signed, Float32())) 10648

ctx = _get_ctx(ctx)

10658  raise

Z3Exception(

"Unsupported combination of arguments for conversion to floating-point term."

)

10662  """Create a Z3 floating-point conversion expression that represents the 10663  conversion from a bit-vector term to a floating-point term. 10665  >>> x_bv = BitVecVal(0x3F800000, 32) 10666  >>> x_fp = fpBVToFP(x_bv, Float32()) 10672

_z3_assert(

is_bv

(v),

"First argument must be a Z3 bit-vector expression"

)

10673

_z3_assert(

is_fp_sort

(sort),

"Second argument must be a Z3 floating-point sort."

)

10674

ctx = _get_ctx(ctx)

10679  """Create a Z3 floating-point conversion expression that represents the 10680  conversion from a floating-point term to a floating-point term of different precision. 10682  >>> x_sgl = FPVal(1.0, Float32()) 10683  >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64()) 10686  >>> simplify(x_dbl) 10691

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression."

)

10692

_z3_assert(

is_fp

(v),

"Second argument must be a Z3 floating-point expression."

)

10693

_z3_assert(

is_fp_sort

(sort),

"Third argument must be a Z3 floating-point sort."

)

10694

ctx = _get_ctx(ctx)

10699  """Create a Z3 floating-point conversion expression that represents the 10700  conversion from a real term to a floating-point term. 10702  >>> x_r = RealVal(1.5) 10703  >>> x_fp = fpRealToFP(RNE(), x_r, Float32()) 10709

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression."

)

10710

_z3_assert(

is_real

(v),

"Second argument must be a Z3 expression or real sort."

)

10711

_z3_assert(

is_fp_sort

(sort),

"Third argument must be a Z3 floating-point sort."

)

10712

ctx = _get_ctx(ctx)

10717  """Create a Z3 floating-point conversion expression that represents the 10718  conversion from a signed bit-vector term (encoding an integer) to a floating-point term. 10720  >>> x_signed = BitVecVal(-5, BitVecSort(32)) 10721  >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32()) 10723  fpToFP(RNE(), 4294967291) 10727

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression."

)

10728

_z3_assert(

is_bv

(v),

"Second argument must be a Z3 bit-vector expression"

)

10729

_z3_assert(

is_fp_sort

(sort),

"Third argument must be a Z3 floating-point sort."

)

10730

ctx = _get_ctx(ctx)

10735  """Create a Z3 floating-point conversion expression that represents the 10736  conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term. 10738  >>> x_signed = BitVecVal(-5, BitVecSort(32)) 10739  >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32()) 10741  fpToFPUnsigned(RNE(), 4294967291) 10745

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression."

)

10746

_z3_assert(

is_bv

(v),

"Second argument must be a Z3 bit-vector expression"

)

10747

_z3_assert(

is_fp_sort

(sort),

"Third argument must be a Z3 floating-point sort."

)

10748

ctx = _get_ctx(ctx)

10753  """Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.""" 10755

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression"

)

10756

_z3_assert(

is_bv

(x),

"Second argument must be a Z3 bit-vector expression"

)

10757

_z3_assert(

is_fp_sort

(s),

"Third argument must be Z3 floating-point sort"

)

10758

ctx = _get_ctx(ctx)

10763  """Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector. 10765  >>> x = FP('x', FPSort(8, 24)) 10766  >>> y = fpToSBV(RTZ(), x, BitVecSort(32)) 10767  >>> print(is_fp(x)) 10769  >>> print(is_bv(y)) 10771  >>> print(is_fp(y)) 10773  >>> print(is_bv(x)) 10777

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression"

)

10778

_z3_assert(

is_fp

(x),

"Second argument must be a Z3 floating-point expression"

)

10779

_z3_assert(

is_bv_sort

(s),

"Third argument must be Z3 bit-vector sort"

)

10780

ctx = _get_ctx(ctx)

10785  """Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector. 10787  >>> x = FP('x', FPSort(8, 24)) 10788  >>> y = fpToUBV(RTZ(), x, BitVecSort(32)) 10789  >>> print(is_fp(x)) 10791  >>> print(is_bv(y)) 10793  >>> print(is_fp(y)) 10795  >>> print(is_bv(x)) 10799

_z3_assert(

is_fprm

(rm),

"First argument must be a Z3 floating-point rounding mode expression"

)

10800

_z3_assert(

is_fp

(x),

"Second argument must be a Z3 floating-point expression"

)

10801

_z3_assert(

is_bv_sort

(s),

"Third argument must be Z3 bit-vector sort"

)

10802

ctx = _get_ctx(ctx)

10807  """Create a Z3 floating-point conversion expression, from floating-point expression to real. 10809  >>> x = FP('x', FPSort(8, 24)) 10810  >>> y = fpToReal(x) 10811  >>> print(is_fp(x)) 10813  >>> print(is_real(y)) 10815  >>> print(is_fp(y)) 10817  >>> print(is_real(x)) 10821

_z3_assert(

is_fp

(x),

"First argument must be a Z3 floating-point expression"

)

10822

ctx = _get_ctx(ctx)

10827  """\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format. 10829  The size of the resulting bit-vector is automatically determined. 10831  Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion 10832  knows only one NaN and it will always produce the same bit-vector representation of 10835  >>> x = FP('x', FPSort(8, 24)) 10836  >>> y = fpToIEEEBV(x) 10837  >>> print(is_fp(x)) 10839  >>> print(is_bv(y)) 10841  >>> print(is_fp(y)) 10843  >>> print(is_bv(x)) 10847

_z3_assert(

is_fp

(x),

"First argument must be a Z3 floating-point expression"

)

10848

ctx = _get_ctx(ctx)

10859  """Sequence sort.""" 10862  """Determine if sort is a string 10863  >>> s = StringSort() 10866  >>> s = SeqSort(IntSort()) 10876  """Character sort.""" 10880  """Create a string sort 10881  >>> s = StringSort() 10885

ctx = _get_ctx(ctx)

10889  """Create a character sort 10890  >>> ch = CharSort() 10894

ctx = _get_ctx(ctx)

10899  """Create a sequence sort over elements provided in the argument 10900  >>> s = SeqSort(IntSort()) 10901  >>> s == Unit(IntVal(1)).sort() 10908  """Sequence expression.""" 10914  return Concat

(self, other)

10917  return Concat

(other, self)

10936  """Return a string representation of sequence expression.""" 10938

string_length = ctypes.c_uint()

10940  return

string_at(chars, size=string_length.value).decode(

"latin-1"

)

10956 def

_coerce_char(ch, ctx=None):

10957  if

isinstance(ch, str):

10958

ctx = _get_ctx(ctx)

10961  raise

Z3Exception(

"Character expression expected"

)

10965  """Character expression.""" 10968

other = _coerce_char(other, self.

ctx

ctx)

10982

ctx = _get_ctx(ctx)

10983  if

isinstance(ch, str):

10985  if not

isinstance(ch, int):

10986  raise

Z3Exception(

"character value should be an ordinal"

)

10987  return

_to_expr_ref(

Z3_mk_char

(ctx.ref(), ch), ctx)

10991  raise

Z3Exception(

"Bit-vector expression needed"

)

10995

ch = _coerce_char(ch, ctx)

10999

ch = _coerce_char(ch, ctx)

11003

ch = _coerce_char(ch, ctx)

11004  return

ch.is_digit()

11006 def

_coerce_seq(s, ctx=None):

11007  if

isinstance(s, str):

11008

ctx = _get_ctx(ctx)

11011  raise

Z3Exception(

"Non-expression passed as a sequence"

)

11013  raise

Z3Exception(

"Non-sequence passed as a sequence"

)

11017 def

_get_ctx2(a, b, ctx=None):

11028  """Return `True` if `a` is a Z3 sequence expression. 11029  >>> print (is_seq(Unit(IntVal(0)))) 11031  >>> print (is_seq(StringVal("abc"))) 11034  return

isinstance(a, SeqRef)

11038  """Return `True` if `a` is a Z3 string expression. 11039  >>> print (is_string(StringVal("ab"))) 11042  return

isinstance(a, SeqRef)

and

a.is_string()

11046  """return 'True' if 'a' is a Z3 string constant expression. 11047  >>> print (is_string_value(StringVal("a"))) 11049  >>> print (is_string_value(StringVal("a") + StringVal("b"))) 11052  return

isinstance(a, SeqRef)

and

a.is_string_value()

11055  """create a string expression""" 11056

s =

""

.join(str(ch)

if

32 <= ord(ch)

and

ord(ch) < 127

else "\\u{%x}"

% (ord(ch))

for

ch

in

s)

11057

ctx = _get_ctx(ctx)

11062  """Return a string constant named `name`. If `ctx=None`, then the global context is used. 11064  >>> x = String('x') 11066

ctx = _get_ctx(ctx)

11071  """Return a tuple of String constants. """ 11072

ctx = _get_ctx(ctx)

11073  if

isinstance(names, str):

11074

names = names.split(

" "

)

11075  return

[

String

(name, ctx)

for

name

in

names]

11079  """Extract substring or subsequence starting at offset""" 11080  return Extract

(s, offset, length)

11084  """Extract substring or subsequence starting at offset""" 11085  return Extract

(s, offset, length)

11089  """Create the empty sequence of the given sort 11090  >>> e = Empty(StringSort()) 11091  >>> e2 = StringVal("") 11092  >>> print(e.eq(e2)) 11094  >>> e3 = Empty(SeqSort(IntSort())) 11097  >>> e4 = Empty(ReSort(SeqSort(IntSort()))) 11099  Empty(ReSort(Seq(Int))) 11101  if

isinstance(s, SeqSortRef):

11103  if

isinstance(s, ReSortRef):

11105  raise

Z3Exception(

"Non-sequence, non-regular expression sort passed to Empty"

)

11109  """Create the regular expression that accepts the universal language 11110  >>> e = Full(ReSort(SeqSort(IntSort()))) 11112  Full(ReSort(Seq(Int))) 11113  >>> e1 = Full(ReSort(StringSort())) 11115  Full(ReSort(String)) 11117  if

isinstance(s, ReSortRef):

11119  raise

Z3Exception(

"Non-sequence, non-regular expression sort passed to Full"

)

11124  """Create a singleton sequence""" 11129  """Check if 'a' is a prefix of 'b' 11130  >>> s1 = PrefixOf("ab", "abc") 11133  >>> s2 = PrefixOf("bc", "abc") 11137

ctx = _get_ctx2(a, b)

11138

a = _coerce_seq(a, ctx)

11139

b = _coerce_seq(b, ctx)

11144  """Check if 'a' is a suffix of 'b' 11145  >>> s1 = SuffixOf("ab", "abc") 11148  >>> s2 = SuffixOf("bc", "abc") 11152

ctx = _get_ctx2(a, b)

11153

a = _coerce_seq(a, ctx)

11154

b = _coerce_seq(b, ctx)

11159  """Check if 'a' contains 'b' 11160  >>> s1 = Contains("abc", "ab") 11163  >>> s2 = Contains("abc", "bc") 11166  >>> x, y, z = Strings('x y z') 11167  >>> s3 = Contains(Concat(x,y,z), y) 11171

ctx = _get_ctx2(a, b)

11172

a = _coerce_seq(a, ctx)

11173

b = _coerce_seq(b, ctx)

11178  """Replace the first occurrence of 'src' by 'dst' in 's' 11179  >>> r = Replace("aaa", "a", "b") 11183

ctx = _get_ctx2(dst, s)

11184  if

ctx

is None and is_expr

(src):

11186

src = _coerce_seq(src, ctx)

11187

dst = _coerce_seq(dst, ctx)

11188

s = _coerce_seq(s, ctx)

11193  """Retrieve the index of substring within a string starting at a specified offset. 11194  >>> simplify(IndexOf("abcabc", "bc", 0)) 11196  >>> simplify(IndexOf("abcabc", "bc", 2)) 11199  if

offset

is None

:

11204

ctx = _get_ctx2(s, substr, ctx)

11205

s = _coerce_seq(s, ctx)

11206

substr = _coerce_seq(substr, ctx)

11207  if

_is_int(offset):

11208

offset =

IntVal

(offset, ctx)

11213  """Retrieve the last index of substring within a string""" 11215

ctx = _get_ctx2(s, substr, ctx)

11216

s = _coerce_seq(s, ctx)

11217

substr = _coerce_seq(substr, ctx)

11222  """Obtain the length of a sequence 's' 11223  >>> l = Length(StringVal("abc")) 11231  """Map function 'f' over sequence 's'""" 11232

ctx = _get_ctx2(f, s)

11233

s = _coerce_seq(s, ctx)

11234  return

_to_expr_ref(

Z3_mk_seq_map

(s.ctx_ref(), f.as_ast(), s.as_ast()), ctx)

11237  """Map function 'f' over sequence 's' at index 'i'""" 11238

ctx = _get_ctx(f, s)

11239

s = _coerce_seq(s, ctx)

11242  return

_to_expr_ref(

Z3_mk_seq_mapi

(s.ctx_ref(), f.as_ast(), i.as_ast(), s.as_ast()), ctx)

11245

ctx = _get_ctx2(f, s)

11246

s = _coerce_seq(s, ctx)

11248  return

_to_expr_ref(

Z3_mk_seq_foldl

(s.ctx_ref(), f.as_ast(), a.as_ast(), s.as_ast()), ctx)

11251

ctx = _get_ctx2(f, s)

11252

s = _coerce_seq(s, ctx)

11255  return

_to_expr_ref(

Z3_mk_seq_foldli

(s.ctx_ref(), f.as_ast(), i.as_ast(), a.as_ast(), s.as_ast()), ctx)

11258  """Convert string expression to integer 11259  >>> a = StrToInt("1") 11260  >>> simplify(1 == a) 11262  >>> b = StrToInt("2") 11263  >>> simplify(1 == b) 11265  >>> c = StrToInt(IntToStr(2)) 11266  >>> simplify(1 == c) 11274  """Convert integer expression to string""" 11281  """Convert a unit length string to integer code""" 11287  """Convert code to a string""" 11293  """The regular expression that accepts sequence 's' 11295  >>> s2 = Re(StringVal("ab")) 11296  >>> s3 = Re(Unit(BoolVal(True))) 11298

s = _coerce_seq(s, ctx)

11305  """Regular expression sort.""" 11314  if

s

is None or

isinstance(s, Context):

11317  raise

Z3Exception(

"Regular expression sort constructor expects either a string or a context or no argument"

)

11321  """Regular expressions.""" 11324  return Union

(self, other)

11328  return

isinstance(s, ReRef)

11332  """Create regular expression membership test 11333  >>> re = Union(Re("a"),Re("b")) 11334  >>> print (simplify(InRe("a", re))) 11336  >>> print (simplify(InRe("b", re))) 11338  >>> print (simplify(InRe("c", re))) 11341

s = _coerce_seq(s, re.ctx)

11346  """Create union of regular expressions. 11347  >>> re = Union(Re("a"), Re("b"), Re("c")) 11348  >>> print (simplify(InRe("d", re))) 11351

args = _get_args(args)

11354

_z3_assert(sz > 0,

"At least one argument expected."

)

11355

_z3_assert(all([

is_re

(a)

for

a

in

args]),

"All arguments must be regular expressions."

)

11360  for

i

in range

(sz):

11361

v[i] = args[i].as_ast()

11366  """Create intersection of regular expressions. 11367  >>> re = Intersect(Re("a"), Re("b"), Re("c")) 11369

args = _get_args(args)

11372

_z3_assert(sz > 0,

"At least one argument expected."

)

11373

_z3_assert(all([

is_re

(a)

for

a

in

args]),

"All arguments must be regular expressions."

)

11378  for

i

in range

(sz):

11379

v[i] = args[i].as_ast()

11384  """Create the regular expression accepting one or more repetitions of argument. 11385  >>> re = Plus(Re("a")) 11386  >>> print(simplify(InRe("aa", re))) 11388  >>> print(simplify(InRe("ab", re))) 11390  >>> print(simplify(InRe("", re))) 11394

_z3_assert(

is_expr

(re),

"expression expected"

)

11399  """Create the regular expression that optionally accepts the argument. 11400  >>> re = Option(Re("a")) 11401  >>> print(simplify(InRe("a", re))) 11403  >>> print(simplify(InRe("", re))) 11405  >>> print(simplify(InRe("aa", re))) 11409

_z3_assert(

is_expr

(re),

"expression expected"

)

11414  """Create the complement regular expression.""" 11419  """Create the regular expression accepting zero or more repetitions of argument. 11420  >>> re = Star(Re("a")) 11421  >>> print(simplify(InRe("aa", re))) 11423  >>> print(simplify(InRe("ab", re))) 11425  >>> print(simplify(InRe("", re))) 11429

_z3_assert(

is_expr

(re),

"expression expected"

)

11434  """Create the regular expression accepting between a lower and upper bound repetitions 11435  >>> re = Loop(Re("a"), 1, 3) 11436  >>> print(simplify(InRe("aa", re))) 11438  >>> print(simplify(InRe("aaaa", re))) 11440  >>> print(simplify(InRe("", re))) 11444

_z3_assert(

is_expr

(re),

"expression expected"

)

11449  """Create the range regular expression over two sequences of length 1 11450  >>> range = Range("a","z") 11451  >>> print(simplify(InRe("b", range))) 11453  >>> print(simplify(InRe("bb", range))) 11456

lo = _coerce_seq(lo, ctx)

11457

hi = _coerce_seq(hi, ctx)

11459

_z3_assert(

is_expr

(lo),

"expression expected"

)

11460

_z3_assert(

is_expr

(hi),

"expression expected"

)

11464  """Create the difference regular expression 11467

_z3_assert(

is_expr

(a),

"expression expected"

)

11468

_z3_assert(

is_expr

(b),

"expression expected"

)

11472  """Create a regular expression that accepts all single character strings 11496  """Given a binary relation R, such that the two arguments have the same sort 11497  create the transitive closure relation R+. 11498  The transitive closure R+ is a new relation. 11504

super(ctypes.c_void_p, ast).__init__(ptr)

11508

ctx = ContextObj(ptr)

11509

super(ctypes.c_void_p, ctx).__init__(ptr)

11513

v = AstVectorObj(ptr)

11514

super(ctypes.c_void_p, v).__init__(ptr)

11522

_my_hacky_class =

None 11524

onc = _my_hacky_class

11525

p = _to_expr_ref(

to_Ast

(p), onc.ctx)

11527

deps = [dep[i]

for

i

in range

(n)]

11528

onc.on_clause(p, deps, clause)

11530

_on_clause_eh = Z3_on_clause_eh(on_clause_eh)

11538  global

_my_hacky_class

11539

_my_hacky_class = self

11549  if

self.

lock

lock

is None

:

11551

self.

lock

lock = threading.Lock()

11554  if

self.

lock

lock:

11555  with

self.

lock

lock:

11556

r = self.

bases

bases[ctx]

11558

r = self.

bases

bases[ctx]

11562  if

self.

lock

lock:

11563  with

self.

lock

lock:

11564

self.

bases

bases[ctx] = r

11566

self.

bases

bases[ctx] = r

11569  if

self.

lock

lock:

11570  with

self.

lock

lock:

11571

id = len(self.

bases

bases) + 3

11572

self.

bases

bases[id] = r

11574

id = len(self.

bases

bases) + 3

11575

self.

bases

bases[id] = r

11579

_prop_closures =

None 11583  global

_prop_closures

11584  if

_prop_closures

is None

:

11589

prop = _prop_closures.get(ctx)

11595

prop = _prop_closures.get(ctx)

11597

prop.pop(num_scopes)

11601

_prop_closures.set_threaded()

11602

prop = _prop_closures.get(ctx)

11609

new_prop = prop.fresh(nctx)

11610

_prop_closures.set(new_prop.id, new_prop)

11615

prop = _prop_closures.get(ctx)

11618

id = _to_expr_ref(

to_Ast

(id), prop.ctx())

11619

value = _to_expr_ref(

to_Ast

(value), prop.ctx())

11620

prop.fixed(id, value)

11624

prop = _prop_closures.get(ctx)

11627

id = _to_expr_ref(

to_Ast

(id), prop.ctx())

11633

prop = _prop_closures.get(ctx)

11640

prop = _prop_closures.get(ctx)

11643

x = _to_expr_ref(

to_Ast

(x), prop.ctx())

11644

y = _to_expr_ref(

to_Ast

(y), prop.ctx())

11649

prop = _prop_closures.get(ctx)

11652

x = _to_expr_ref(

to_Ast

(x), prop.ctx())

11653

y = _to_expr_ref(

to_Ast

(y), prop.ctx())

11658

prop = _prop_closures.get(ctx)

11661

t = _to_expr_ref(

to_Ast

(t_ref), prop.ctx())

11662

prop.decide(t, idx, phase)

11666

_user_prop_push = Z3_push_eh(user_prop_push)

11667

_user_prop_pop = Z3_pop_eh(user_prop_pop)

11668

_user_prop_fresh = Z3_fresh_eh(user_prop_fresh)

11669

_user_prop_fixed = Z3_fixed_eh(user_prop_fixed)

11670

_user_prop_created = Z3_created_eh(user_prop_created)

11671

_user_prop_final = Z3_final_eh(user_prop_final)

11672

_user_prop_eq = Z3_eq_eh(user_prop_eq)

11673

_user_prop_diseq = Z3_eq_eh(user_prop_diseq)

11674

_user_prop_decide = Z3_decide_eh(user_prop_decide)

11678  """Create a function that gets tracked by user propagator. 11679  Every term headed by this function symbol is tracked. 11680  If a term is fixed and the fixed callback is registered a 11681  callback is invoked that the term headed by this function is fixed. 11683

sig = _get_args(sig)

11685

_z3_assert(len(sig) > 0,

"At least two arguments expected"

)

11686

arity = len(sig) - 1

11689

_z3_assert(

is_sort

(rng),

"Z3 sort expected"

)

11690

dom = (Sort * arity)()

11691  for

i

in range

(arity):

11693

_z3_assert(

is_sort

(sig[i]),

"Z3 sort expected"

)

11694

dom[i] = sig[i].ast

11710  assert

s

is None or

ctx

is None 11713

self.

_ctx

_ctx =

None 11716

self.

id

id = _prop_closures.insert(self)

11727

ctypes.c_void_p(self.

id

id),

11733  if

self.

_ctx

_ctx:

11734

self.

_ctx

_ctx.ctx =

None 11740  return

self.

solver

solver.ctx

11743  return

self.

ctx

ctx().ref()

11746  assert not

self.

fixed

fixed

11747  assert not

self.

_ctx

_ctx

11750

self.

fixed

fixed = fixed

11753  assert not

self.

created

created

11754  assert not

self.

_ctx

_ctx

11757

self.

created

created = created

11760  assert not

self.

final

final

11761  assert not

self.

_ctx

_ctx

11764

self.

final

final = final

11767  assert not

self.

eq

eq

11768  assert not

self.

_ctx

_ctx

11774  assert not

self.

diseq

diseq

11775  assert not

self.

_ctx

_ctx

11778

self.

diseq

diseq = diseq

11781  assert not

self.

decide

decide

11782  assert not

self.

_ctx

_ctx

11788  raise

Z3Exception(

"push needs to be overwritten"

)

11791  raise

Z3Exception(

"pop needs to be overwritten"

)

11794  raise

Z3Exception(

"fresh needs to be overwritten"

)

11797  assert not

self.

_ctx

_ctx

11815

_ids, num_fixed = _to_ast_array(ids)

11817

_lhs, _num_lhs = _to_ast_array([x

for

x, y

in

eqs])

11818

_rhs, _num_rhs = _to_ast_array([y

for

x, y

in

eqs])

11820

self.

cb

cb), num_fixed, _ids, num_eqs, _lhs, _rhs, e.ast)

def as_decimal(self, prec)

def approx(self, precision=10)

def __getitem__(self, idx)

def __init__(self, result, ctx)

def __deepcopy__(self, memo={})

def __radd__(self, other)

def __rmul__(self, other)

def __rsub__(self, other)

def __rtruediv__(self, other)

def __rdiv__(self, other)

def __truediv__(self, other)

def __rpow__(self, other)

def __rmod__(self, other)

def __getitem__(self, arg)

def __init__(self, m=None, ctx=None)

def __getitem__(self, key)

def __deepcopy__(self, memo={})

def __setitem__(self, k, v)

def __contains__(self, key)

def __init__(self, ast, ctx=None)

def translate(self, target)

def __deepcopy__(self, memo={})

def __contains__(self, item)

def __init__(self, v=None, ctx=None)

def __setitem__(self, i, v)

def translate(self, other_ctx)

def __deepcopy__(self, memo={})

def as_binary_string(self)

def __rlshift__(self, other)

def __radd__(self, other)

def __rxor__(self, other)

def __rshift__(self, other)

def __rand__(self, other)

def __rmul__(self, other)

def __rsub__(self, other)

def __rtruediv__(self, other)

def __rdiv__(self, other)

def __lshift__(self, other)

def __rrshift__(self, other)

def __truediv__(self, other)

def __rmod__(self, other)

def __radd__(self, other)

def __rmul__(self, other)

def __deepcopy__(self, memo={})

def __init__(self, *args, **kws)

def __init__(self, name, ctx=None)

def declare(self, name, *args)

def declare_core(self, name, rec_name, *args)

def __deepcopy__(self, memo={})

def recognizer(self, idx)

def num_constructors(self)

def constructor(self, idx)

def exponent(self, biased=True)

def significand_as_bv(self)

def exponent_as_long(self, biased=True)

def significand_as_long(self)

def exponent_as_bv(self, biased=True)

def __radd__(self, other)

def __rmul__(self, other)

def __rsub__(self, other)

def __rtruediv__(self, other)

def __rdiv__(self, other)

def __truediv__(self, other)

def __rmod__(self, other)

def abstract(self, fml, is_forall=True)

def fact(self, head, name=None)

def rule(self, head, body=None, name=None)

def to_string(self, queries)

def add_cover(self, level, predicate, property)

def add_rule(self, head, body=None, name=None)

def assert_exprs(self, *args)

def update_rule(self, head, body, name)

def query_from_lvl(self, lvl, *query)

def parse_string(self, s)

def get_rules_along_trace(self)

def get_ground_sat_answer(self)

def set_predicate_representation(self, f, *representations)

def get_cover_delta(self, level, predicate)

def __deepcopy__(self, memo={})

def get_num_levels(self, predicate)

def declare_var(self, *vars)

def set(self, *args, **keys)

def __init__(self, fixedpoint=None, ctx=None)

def register_relation(self, *relations)

def get_rule_names_along_trace(self)

def __call__(self, *args)

def __init__(self, entry, ctx)

def __deepcopy__(self, memo={})

def __init__(self, f, ctx)

def translate(self, other_ctx)

def __deepcopy__(self, memo={})

def dimacs(self, include_names=True)

def convert_model(self, model)

def assert_exprs(self, *args)

def __getitem__(self, arg)

def __init__(self, models=True, unsat_cores=False, proofs=False, ctx=None, goal=None)

def translate(self, target)

def __deepcopy__(self, memo={})

def simplify(self, *arguments, **keywords)

def as_binary_string(self)

def get_universe(self, s)

def eval(self, t, model_completion=False)

def __init__(self, m, ctx)

def __getitem__(self, idx)

def update_value(self, x, value)

def translate(self, target)

def evaluate(self, t, model_completion=False)

def __deepcopy__(self, memo={})

def get_interp(self, decl)

def __init__(self, s, on_clause)

def add_soft(self, arg, weight="1", id=None)

def assert_exprs(self, *args)

def __init__(self, optimize=None, ctx=None)

def upper_values(self, obj)

def from_file(self, filename)

def set_on_model(self, on_model)

def set_initial_value(self, var, value)

def check(self, *assumptions)

def __deepcopy__(self, memo={})

def assert_and_track(self, a, p)

def set(self, *args, **keys)

def lower_values(self, obj)

def __init__(self, opt, value, is_max)

def __getitem__(self, arg)

def __init__(self, descr, ctx=None)

def get_documentation(self, n)

def __deepcopy__(self, memo={})

def __init__(self, ctx=None, params=None)

def __deepcopy__(self, memo={})

def __init__(self, ctx=None)

def __init__(self, probe, ctx=None)

def __deepcopy__(self, memo={})

def no_pattern(self, idx)

def num_no_patterns(self)

def __getitem__(self, arg)

def as_decimal(self, prec)

def numerator_as_long(self)

def denominator_as_long(self)

def __init__(self, c, ctx)

def __init__(self, c, ctx)

def __radd__(self, other)

def is_string_value(self)

Strings, Sequences and Regular expressions.

def __init__(self, simplifier, ctx=None)

def using_params(self, *args, **keys)

def __deepcopy__(self, memo={})

def dimacs(self, include_names=True)

def __exit__(self, *exc_info)

def import_model_converter(self, other)

def __init__(self, solver=None, ctx=None, logFile=None)

def assert_exprs(self, *args)

def cube(self, vars=None)

def from_file(self, filename)

def set_initial_value(self, var, value)

def check(self, *assumptions)

def translate(self, target)

def __deepcopy__(self, memo={})

def consequences(self, assumptions, variables)

def assert_and_track(self, a, p)

def set(self, *args, **keys)

def __getattr__(self, name)

def __getitem__(self, idx)

def __init__(self, stats, ctx)

def get_key_value(self, key)

def __deepcopy__(self, memo={})

def __call__(self, goal, *arguments, **keywords)

def solver(self, logFile=None)

def __init__(self, tactic, ctx=None)

def __deepcopy__(self, memo={})

def apply(self, goal, *arguments, **keywords)

def add_fixed(self, fixed)

def add_diseq(self, diseq)

def pop(self, num_scopes)

def next_split(self, t, idx, phase)

def __init__(self, s, ctx=None)

def propagate(self, e, ids, eqs=[])

def add_decide(self, decide)

def add_created(self, created)

def conflict(self, deps=[], eqs=[])

def add_final(self, final)

Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)

Pseudo-Boolean relations.

Z3_ast_vector Z3_API Z3_optimize_get_assertions(Z3_context c, Z3_optimize o)

Return the set of asserted formulas on the optimization context.

Z3_ast Z3_API Z3_model_get_const_interp(Z3_context c, Z3_model m, Z3_func_decl a)

Return the interpretation (i.e., assignment) of constant a in the model m. Return NULL,...

Z3_sort Z3_API Z3_mk_int_sort(Z3_context c)

Create the integer type.

Z3_simplifier Z3_API Z3_simplifier_and_then(Z3_context c, Z3_simplifier t1, Z3_simplifier t2)

Return a simplifier that applies t1 to a given goal and t2 to every subgoal produced by t1.

Z3_probe Z3_API Z3_probe_lt(Z3_context x, Z3_probe p1, Z3_probe p2)

Return a probe that evaluates to "true" when the value returned by p1 is less than the value returned...

Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const *domain, Z3_sort range)

Create an array type with N arguments.

bool Z3_API Z3_open_log(Z3_string filename)

Log interaction to a file.

Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(Z3_context c, Z3_func_decl d, unsigned idx)

Return the parameter type associated with a declaration.

Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)

Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)

Return a probe that evaluates to "true" when p does not evaluate to true.

Z3_decl_kind Z3_API Z3_get_decl_kind(Z3_context c, Z3_func_decl d)

Return declaration kind corresponding to declaration.

void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p)

Assert a constraint a into the solver, and track it (in the unsat) core using the Boolean constant p.

Z3_ast Z3_API Z3_func_interp_get_else(Z3_context c, Z3_func_interp f)

Return the 'else' value of the given function interpretation.

Z3_ast Z3_API Z3_mk_char_to_bv(Z3_context c, Z3_ast ch)

Create a bit-vector (code point) from character.

void Z3_API Z3_solver_propagate_diseq(Z3_context c, Z3_solver s, Z3_eq_eh eq_eh)

register a callback on expression dis-equalities.

Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)

Two's complement signed greater than or equal to.

void Z3_API Z3_ast_map_inc_ref(Z3_context c, Z3_ast_map m)

Increment the reference counter of the given AST map.

void Z3_API Z3_fixedpoint_inc_ref(Z3_context c, Z3_fixedpoint d)

Increment the reference counter of the given fixedpoint context.

Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p)

Return a tactic that applies t using the given set of parameters.

Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)

Create the constant array.

void Z3_API Z3_simplifier_inc_ref(Z3_context c, Z3_simplifier t)

Increment the reference counter of the given simplifier.

void Z3_API Z3_fixedpoint_add_rule(Z3_context c, Z3_fixedpoint d, Z3_ast rule, Z3_symbol name)

Add a universal Horn clause as a named rule. The horn_rule should be of the form:

Z3_probe Z3_API Z3_probe_eq(Z3_context x, Z3_probe p1, Z3_probe p2)

Return a probe that evaluates to "true" when the value returned by p1 is equal to the value returned ...

Z3_ast_vector Z3_API Z3_optimize_get_unsat_core(Z3_context c, Z3_optimize o)

Retrieve the unsat core for the last Z3_optimize_check The unsat core is a subset of the assumptions ...

void Z3_API Z3_fixedpoint_set_predicate_representation(Z3_context c, Z3_fixedpoint d, Z3_func_decl f, unsigned num_relations, Z3_symbol const relation_kinds[])

Configure the predicate representation.

Z3_sort Z3_API Z3_mk_char_sort(Z3_context c)

Create a sort for unicode characters.

Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re)

Create the regular language [re].

Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)

Two's complement signed less than or equal to.

Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a)

Return the declaration of a constant or function application.

void Z3_API Z3_optimize_set_initial_value(Z3_context c, Z3_optimize o, Z3_ast v, Z3_ast val)

provide an initialization hint to the solver. The initialization hint is used to calibrate an initial...

void Z3_API Z3_del_context(Z3_context c)

Delete the given logical context.

Z3_ast Z3_API Z3_substitute(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])

Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs....

Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])

Create an AST node representing args[0] * ... * args[num_args-1].

Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(Z3_context c, Z3_func_decl d, unsigned idx)

Return the expression value associated with an expression parameter.

Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s)

Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.

Z3_ast Z3_API Z3_ast_map_find(Z3_context c, Z3_ast_map m, Z3_ast k)

Return the value associated with the key k.

Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst)

Replace the first occurrence of src with dst in s.

Z3_string Z3_API Z3_ast_map_to_string(Z3_context c, Z3_ast_map m)

Convert the given map into a string.

Z3_string Z3_API Z3_param_descrs_to_string(Z3_context c, Z3_param_descrs p)

Convert a parameter description set into a string. This function is mainly used for printing the cont...

Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)

Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...

void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p)

Set the given solver using the given parameters.

Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])

Take the intersection of a list of sets.

Z3_ast Z3_API Z3_mk_str_le(Z3_context c, Z3_ast prefix, Z3_ast s)

Check if s1 is equal or lexicographically strictly less than s2.

Z3_params Z3_API Z3_mk_params(Z3_context c)

Create a Z3 (empty) parameter set. Starting at Z3 4.0, parameter sets are used to configure many comp...

unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d)

Return the number of parameters associated with a declaration.

Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)

Check for subsetness of sets.

Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a)

Interface to simplifier.

Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t)

Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

Z3_lbool Z3_API Z3_solver_get_consequences(Z3_context c, Z3_solver s, Z3_ast_vector assumptions, Z3_ast_vector variables, Z3_ast_vector consequences)

retrieve consequences from solver that determine values of the supplied function symbols.

Z3_ast_vector Z3_API Z3_fixedpoint_from_file(Z3_context c, Z3_fixedpoint f, Z3_string s)

Parse an SMT-LIB2 file with fixedpoint rules. Add the rules to the current fixedpoint context....

Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)

Unsigned less than or equal to.

Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)

Create the full set.

Z3_param_kind Z3_API Z3_param_descrs_get_kind(Z3_context c, Z3_param_descrs p, Z3_symbol n)

Return the kind associated with the given parameter name n.

Z3_ast Z3_API Z3_mk_char_le(Z3_context c, Z3_ast ch1, Z3_ast ch2)

Create less than or equal to between two characters.

Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)

Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.

Z3_ast_vector Z3_API Z3_optimize_get_upper_as_vector(Z3_context c, Z3_optimize o, unsigned idx)

Retrieve upper bound value or approximation for the i'th optimization objective.

void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body)

Define the body of a recursive function.

Z3_param_descrs Z3_API Z3_solver_get_param_descrs(Z3_context c, Z3_solver s)

Return the parameter description set for the given solver object.

Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)

Conversion of a floating-point term into a signed bit-vector.

Z3_ast Z3_API Z3_mk_true(Z3_context c)

Create an AST node representing true.

Z3_ast Z3_API Z3_optimize_get_lower(Z3_context c, Z3_optimize o, unsigned idx)

Retrieve lower bound value or approximation for the i'th optimization objective.

Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])

Take the union of a list of sets.

Z3_model Z3_API Z3_optimize_get_model(Z3_context c, Z3_optimize o)

Retrieve the model for the last Z3_optimize_check.

void Z3_API Z3_apply_result_inc_ref(Z3_context c, Z3_apply_result r)

Increment the reference counter of the given Z3_apply_result object.

Z3_func_interp Z3_API Z3_add_func_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast default_value)

Create a fresh func_interp object, add it to a model for a specified function. It has reference count...

Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)

Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

void Z3_API Z3_parser_context_add_decl(Z3_context c, Z3_parser_context pc, Z3_func_decl f)

Add a function declaration.

unsigned Z3_API Z3_get_arity(Z3_context c, Z3_func_decl d)

Alias for Z3_get_domain_size.

void Z3_API Z3_ast_vector_set(Z3_context c, Z3_ast_vector v, unsigned i, Z3_ast a)

Update position i of the AST vector v with the AST a.

Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)

Bitwise exclusive-or.

Z3_string Z3_API Z3_stats_to_string(Z3_context c, Z3_stats s)

Convert a statistics into a string.

Z3_param_descrs Z3_API Z3_fixedpoint_get_param_descrs(Z3_context c, Z3_fixedpoint f)

Return the parameter description set for the given fixedpoint object.

Z3_sort Z3_API Z3_mk_real_sort(Z3_context c)

Create the real type.

Z3_ast Z3_API Z3_mk_string_from_code(Z3_context c, Z3_ast a)

Code to string conversion.

void Z3_API Z3_optimize_from_file(Z3_context c, Z3_optimize o, Z3_string s)

Parse an SMT-LIB2 file with assertions, soft constraints and optimization objectives....

Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)

Create less than or equal to.

bool Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value)

Get a global (or module) parameter.

Z3_string Z3_API Z3_simplifier_get_help(Z3_context c, Z3_simplifier t)

Return a string containing a description of parameters accepted by the given simplifier.

bool Z3_API Z3_goal_inconsistent(Z3_context c, Z3_goal g)

Return true if the given goal contains the formula false.

Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)

Create a lambda expression using a list of constants that form the set of bound variables.

Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)

Return a tactic that applies t1 to a given goal and then t2 to every subgoal produced by t1....

void Z3_API Z3_fixedpoint_update_rule(Z3_context c, Z3_fixedpoint d, Z3_ast a, Z3_symbol name)

Update a named rule. A rule with the same name must have been previously created.

void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s)

Decrement the reference counter of the given solver.

Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)

Two's complement signed less than.

Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i)

Return the declaration of the i-th function in the given model.

bool Z3_API Z3_ast_map_contains(Z3_context c, Z3_ast_map m, Z3_ast k)

Return true if the map m contains the AST key k.

Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s)

Return the length of the sequence s.

Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty)

Create a numeral of a given sort.

unsigned Z3_API Z3_func_entry_get_num_args(Z3_context c, Z3_func_entry e)

Return the number of arguments in a Z3_func_entry object.

Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p)

Interface to simplifier.

Z3_symbol Z3_API Z3_get_decl_symbol_parameter(Z3_context c, Z3_func_decl d, unsigned idx)

Return the double value associated with an double parameter.

Z3_symbol Z3_API Z3_get_quantifier_skolem_id(Z3_context c, Z3_ast a)

Obtain skolem id of quantifier.

Z3_sort Z3_API Z3_get_seq_sort_basis(Z3_context c, Z3_sort s)

Retrieve basis sort for sequence sort.

void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string str)

load solver assertions from a string.

Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)

Return the numerator (as a numeral AST) of a numeral AST of sort Real.

bool Z3_API Z3_fpa_get_numeral_sign(Z3_context c, Z3_ast t, int *sgn)

Retrieves the sign of a floating-point literal.

Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)

Create an AST node representing - arg.

Z3_probe Z3_API Z3_probe_ge(Z3_context x, Z3_probe p1, Z3_probe p2)

Return a probe that evaluates to "true" when the value returned by p1 is greater than or equal to the...

Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])

Create an AST node representing args[0] and ... and args[num_args-1].

void Z3_API Z3_simplifier_dec_ref(Z3_context c, Z3_simplifier g)

Decrement the reference counter of the given simplifier.

void Z3_API Z3_interrupt(Z3_context c)

Interrupt the execution of a Z3 procedure. This procedure can be used to interrupt: solvers,...

Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s)

Convert string to integer.

void Z3_API Z3_goal_assert(Z3_context c, Z3_goal g, Z3_ast a)

Add a new formula a to the given goal. The formula is split according to the following procedure that...

Z3_symbol Z3_API Z3_param_descrs_get_name(Z3_context c, Z3_param_descrs p, unsigned i)

Return the name of the parameter at given index i.

Z3_ast Z3_API Z3_mk_re_allchar(Z3_context c, Z3_sort regex_sort)

Create a regular expression that accepts all singleton sequences of the regular expression sort.

Z3_ast Z3_API Z3_func_entry_get_value(Z3_context c, Z3_func_entry e)

Return the value of this point.

bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a)

Determine if ast is an existential quantifier.

Z3_ast_vector Z3_API Z3_fixedpoint_from_string(Z3_context c, Z3_fixedpoint f, Z3_string s)

Parse an SMT-LIB2 string with fixedpoint rules. Add the rules to the current fixedpoint context....

Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s)

Create a free (uninterpreted) type using the given name (symbol).

void Z3_API Z3_optimize_pop(Z3_context c, Z3_optimize d)

Backtrack one level.

Z3_ast Z3_API Z3_mk_false(Z3_context c)

Create an AST node representing false.

Z3_ast_vector Z3_API Z3_ast_map_keys(Z3_context c, Z3_ast_map m)

Return the keys stored in the given map.

Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)

Conversion of a floating-point term into an unsigned bit-vector.

Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)

Standard two's complement multiplication.

Z3_ast Z3_API Z3_mk_seq_at(Z3_context c, Z3_ast s, Z3_ast index)

Retrieve from s the unit sequence positioned at position index. The sequence is empty if the index is...

Z3_model Z3_API Z3_goal_convert_model(Z3_context c, Z3_goal g, Z3_model m)

Convert a model of the formulas of a goal to a model of an original goal. The model may be null,...

void Z3_API Z3_del_constructor(Z3_context c, Z3_constructor constr)

Reclaim memory allocated to constructor.

Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)

Two's complement signed greater than.

Z3_string Z3_API Z3_ast_to_string(Z3_context c, Z3_ast a)

Convert the given AST node into a string.

Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re)

Create the complement of the regular language re.

Z3_sort Z3_API Z3_mk_fpa_sort_half(Z3_context c)

Create the half-precision (16-bit) FloatingPoint sort.

Z3_ast_vector Z3_API Z3_fixedpoint_get_assertions(Z3_context c, Z3_fixedpoint f)

Retrieve set of background assertions from fixedpoint context.

Z3_context Z3_API Z3_mk_context_rc(Z3_config c)

Create a context using the given configuration. This function is similar to Z3_mk_context....

unsigned Z3_API Z3_fpa_get_ebits(Z3_context c, Z3_sort s)

Retrieves the number of bits reserved for the exponent in a FloatingPoint sort.

Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s)

Return the set of asserted formulas on the solver.

Z3_string Z3_API Z3_get_full_version(void)

Return a string that fully describes the version of Z3 in use.

void Z3_API Z3_enable_trace(Z3_string tag)

Enable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.

Z3_solver Z3_API Z3_mk_solver_from_tactic(Z3_context c, Z3_tactic t)

Create a new solver that is implemented using the given tactic. The solver supports the commands Z3_s...

Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)

Take the complement of a set.

unsigned Z3_API Z3_get_quantifier_num_patterns(Z3_context c, Z3_ast a)

Return number of patterns used in quantifier.

Z3_symbol Z3_API Z3_get_quantifier_bound_name(Z3_context c, Z3_ast a, unsigned i)

Return symbol of the i'th bound variable.

Z3_string Z3_API Z3_simplify_get_help(Z3_context c)

Return a string describing all available parameters.

unsigned Z3_API Z3_get_num_probes(Z3_context c)

Return the number of builtin probes available in Z3.

bool Z3_API Z3_stats_is_uint(Z3_context c, Z3_stats s, unsigned idx)

Return true if the given statistical data is a unsigned integer.

bool Z3_API Z3_fpa_is_numeral_positive(Z3_context c, Z3_ast t)

Checks whether a given floating-point numeral is positive.

unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)

Return the number of constants assigned by the given model.

Z3_char_ptr Z3_API Z3_get_lstring(Z3_context c, Z3_ast s, unsigned *length)

Retrieve the string constant stored in s. The string can contain escape sequences....

Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)

Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...

Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)

Create an AST node representing arg1 mod arg2.

void Z3_API Z3_solver_interrupt(Z3_context c, Z3_solver s)

Solver local interrupt. Normally you should use Z3_interrupt to cancel solvers because only one solve...

Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)

Take conjunction of bits in vector, return vector of length 1.

bool Z3_API Z3_fpa_get_numeral_exponent_int64(Z3_context c, Z3_ast t, int64_t *n, bool biased)

Return the exponent value of a floating-point numeral as a signed 64-bit integer.

Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)

Add an element to a set.

Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)

Create greater than or equal to.

Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)

Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)

Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

void Z3_API Z3_set_ast_print_mode(Z3_context c, Z3_ast_print_mode mode)

Select mode for the format used for pretty-printing AST nodes.

bool Z3_API Z3_solver_propagate_consequence(Z3_context c, Z3_solver_callback cb, unsigned num_fixed, Z3_ast const *fixed, unsigned num_eqs, Z3_ast const *eq_lhs, Z3_ast const *eq_rhs, Z3_ast conseq)

propagate a consequence based on fixed values and equalities. A client may invoke it during the pro...

bool Z3_API Z3_fpa_is_numeral_nan(Z3_context c, Z3_ast t)

Checks whether a given floating-point numeral is a NaN.

unsigned Z3_API Z3_fpa_get_sbits(Z3_context c, Z3_sort s)

Retrieves the number of bits reserved for the significand in a FloatingPoint sort.

Z3_ast_vector Z3_API Z3_optimize_get_lower_as_vector(Z3_context c, Z3_optimize o, unsigned idx)

Retrieve lower bound value or approximation for the i'th optimization objective. The returned vector ...

Z3_ast Z3_API Z3_mk_array_default(Z3_context c, Z3_ast array)

Access the array default value. Produces the default range value, for arrays that can be represented ...

unsigned Z3_API Z3_model_get_num_sorts(Z3_context c, Z3_model m)

Return the number of uninterpreted sorts that m assigns an interpretation to.

void Z3_API Z3_parser_context_dec_ref(Z3_context c, Z3_parser_context pc)

Decrement the reference counter of the given Z3_parser_context object.

Z3_constructor Z3_API Z3_mk_constructor(Z3_context c, Z3_symbol name, Z3_symbol recognizer, unsigned num_fields, Z3_symbol const field_names[], Z3_sort_opt const sorts[], unsigned sort_refs[])

Create a constructor.

Z3_param_descrs Z3_API Z3_tactic_get_param_descrs(Z3_context c, Z3_tactic t)

Return the parameter description set for the given tactic object.

Z3_ast_vector Z3_API Z3_ast_vector_translate(Z3_context s, Z3_ast_vector v, Z3_context t)

Translate the AST vector v from context s into an AST vector in context t.

void Z3_API Z3_func_entry_inc_ref(Z3_context c, Z3_func_entry e)

Increment the reference counter of the given Z3_func_entry object.

Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty)

Declare and create a fresh constant.

Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)

Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

Z3_ast Z3_API Z3_mk_fpa_round_toward_negative(Z3_context c)

Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.

void Z3_API Z3_solver_push(Z3_context c, Z3_solver s)

Create a backtracking point.

Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)

Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

Z3_goal Z3_API Z3_goal_translate(Z3_context source, Z3_goal g, Z3_context target)

Copy a goal g from the context source to the context target.

void Z3_API Z3_optimize_assert_and_track(Z3_context c, Z3_optimize o, Z3_ast a, Z3_ast t)

Assert tracked hard constraint to the optimization context.

unsigned Z3_API Z3_optimize_assert_soft(Z3_context c, Z3_optimize o, Z3_ast a, Z3_string weight, Z3_symbol id)

Assert soft constraint to the optimization context.

Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)

Unsigned division.

Z3_string Z3_API Z3_ast_vector_to_string(Z3_context c, Z3_ast_vector v)

Convert AST vector into a string.

Z3_ast Z3_API Z3_mk_fpa_to_fp_real(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)

Conversion of a term of real sort into a term of FloatingPoint sort.

Z3_ast_vector Z3_API Z3_solver_get_trail(Z3_context c, Z3_solver s)

Return the trail modulo model conversion, in order of decision level The decision level can be retrie...

bool Z3_API Z3_fpa_get_numeral_significand_uint64(Z3_context c, Z3_ast t, uint64_t *n)

Return the significand value of a floating-point numeral as a uint64.

Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)

Shift left.

Z3_func_decl Z3_API Z3_mk_tree_order(Z3_context c, Z3_sort a, unsigned id)

create a tree ordering relation over signature a identified using index id.

bool Z3_API Z3_is_numeral_ast(Z3_context c, Z3_ast a)

Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)

Two's complement signed remainder (sign follows dividend).

Z3_ast Z3_API Z3_solver_congruence_next(Z3_context c, Z3_solver s, Z3_ast a)

retrieve the next expression in the congruence class. The set of congruent siblings form a cyclic lis...

bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a)

The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3....

Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)

Declare a constant or function.

Z3_solver Z3_API Z3_mk_solver_for_logic(Z3_context c, Z3_symbol logic)

Create a new solver customized for the given logic. It behaves like Z3_mk_solver if the logic is unkn...

Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)

Check if a real number is an integer.

void Z3_API Z3_params_set_bool(Z3_context c, Z3_params p, Z3_symbol k, bool v)

Add a Boolean parameter k with value v to the parameter set p.

unsigned Z3_API Z3_apply_result_get_num_subgoals(Z3_context c, Z3_apply_result r)

Return the number of subgoals in the Z3_apply_result object returned by Z3_tactic_apply.

Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)

Create an AST node representing an if-then-else: ite(t1, t2, t3).

Z3_ast Z3_API Z3_mk_select(Z3_context c, Z3_ast a, Z3_ast i)

Array read. The argument a is the array and i is the index of the array that gets read.

Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)

Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...

Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a)

Create a unit sequence of a.

Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[])

Create the intersection of the regular languages.

Z3_ast_vector Z3_API Z3_solver_cube(Z3_context c, Z3_solver s, Z3_ast_vector vars, unsigned backtrack_level)

extract a next cube for a solver. The last cube is the constant true or false. The number of (non-con...

unsigned Z3_API Z3_goal_size(Z3_context c, Z3_goal g)

Return the number of formulas in the given goal.

Z3_func_decl Z3_API Z3_solver_propagate_declare(Z3_context c, Z3_symbol name, unsigned n, Z3_sort *domain, Z3_sort range)

void Z3_API Z3_stats_inc_ref(Z3_context c, Z3_stats s)

Increment the reference counter of the given statistics object.

Z3_ast Z3_API Z3_mk_select_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs)

n-ary Array read. The argument a is the array and idxs are the indices of the array that gets read.

bool Z3_API Z3_is_string_sort(Z3_context c, Z3_sort s)

Check if s is a string sort.

Z3_string Z3_API Z3_fpa_get_numeral_exponent_string(Z3_context c, Z3_ast t, bool biased)

Return the exponent value of a floating-point numeral as a string.

Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a)

Return the coefficients of the defining polynomial.

Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)

Create an AST node representing arg1 div arg2.

Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)

Pseudo-Boolean relations.

Z3_param_descrs Z3_API Z3_optimize_get_param_descrs(Z3_context c, Z3_optimize o)

Return the parameter description set for the given optimize object.

Z3_sort Z3_API Z3_mk_re_sort(Z3_context c, Z3_sort seq)

Create a regular expression sort out of a sequence sort.

Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)

Pseudo-Boolean relations.

void Z3_API Z3_optimize_inc_ref(Z3_context c, Z3_optimize d)

Increment the reference counter of the given optimize context.

void Z3_API Z3_model_dec_ref(Z3_context c, Z3_model m)

Decrement the reference counter of the given model.

Z3_ast Z3_API Z3_mk_fpa_inf(Z3_context c, Z3_sort s, bool negative)

Create a floating-point infinity of sort s.

void Z3_API Z3_func_interp_inc_ref(Z3_context c, Z3_func_interp f)

Increment the reference counter of the given Z3_func_interp object.

Z3_func_decl Z3_API Z3_mk_piecewise_linear_order(Z3_context c, Z3_sort a, unsigned id)

create a piecewise linear ordering relation over signature a and index id.

void Z3_API Z3_params_set_double(Z3_context c, Z3_params p, Z3_symbol k, double v)

Add a double parameter k with value v to the parameter set p.

Z3_string Z3_API Z3_param_descrs_get_documentation(Z3_context c, Z3_param_descrs p, Z3_symbol s)

Retrieve documentation string corresponding to parameter name s.

Z3_sort Z3_API Z3_mk_datatype_sort(Z3_context c, Z3_symbol name)

create a forward reference to a recursive datatype being declared. The forward reference can be used ...

Z3_solver Z3_API Z3_mk_solver(Z3_context c)

Create a new solver. This solver is a "combined solver" (see combined_solver module) that internally ...

Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s)

Retrieve the model for the last Z3_solver_check or Z3_solver_check_assumptions.

int Z3_API Z3_get_symbol_int(Z3_context c, Z3_symbol s)

Return the symbol int value.

Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a)

Return the function declaration f associated with a (_ as_array f) node.

Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2)

Rotate bits of t1 to the left t2 times.

void Z3_API Z3_goal_inc_ref(Z3_context c, Z3_goal g)

Increment the reference counter of the given goal.

Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[])

Return a tactic that applies the given tactics in parallel.

Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)

Create an AST node representing t1 implies t2.

Z3_ast Z3_API Z3_mk_fpa_nan(Z3_context c, Z3_sort s)

Create a floating-point NaN of sort s.

bool Z3_API Z3_fpa_is_numeral_subnormal(Z3_context c, Z3_ast t)

Checks whether a given floating-point numeral is subnormal.

unsigned Z3_API Z3_get_datatype_sort_num_constructors(Z3_context c, Z3_sort t)

Return number of constructors for datatype.

Z3_ast Z3_API Z3_optimize_get_upper(Z3_context c, Z3_optimize o, unsigned idx)

Retrieve upper bound value or approximation for the i'th optimization objective.

void Z3_API Z3_params_set_uint(Z3_context c, Z3_params p, Z3_symbol k, unsigned v)

Add a unsigned parameter k with value v to the parameter set p.

Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[])

Check whether the assertions in the given solver and optional assumptions are consistent or not.

Z3_sort Z3_API Z3_model_get_sort(Z3_context c, Z3_model m, unsigned i)

Return a uninterpreted sort that m assigns an interpretation.

Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)

Arithmetic shift right.

Z3_simplifier Z3_API Z3_simplifier_using_params(Z3_context c, Z3_simplifier t, Z3_params p)

Return a simplifier that applies t using the given set of parameters.

Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)

Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...

Z3_sort Z3_API Z3_get_array_sort_domain_n(Z3_context c, Z3_sort t, unsigned idx)

Return the i'th domain sort of an n-dimensional array.

void Z3_API Z3_solver_import_model_converter(Z3_context ctx, Z3_solver src, Z3_solver dst)

Ad-hoc method for importing model conversion from solver.

Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)

Remove an element to a set.

Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)

Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])

Create the union of the regular languages.

Z3_param_descrs Z3_API Z3_simplifier_get_param_descrs(Z3_context c, Z3_simplifier t)

Return the parameter description set for the given simplifier object.

void Z3_API Z3_optimize_set_params(Z3_context c, Z3_optimize o, Z3_params p)

Set parameters on optimization context.

Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)

Bitwise or.

int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx)

Return the integer value associated with an integer parameter.

unsigned Z3_API Z3_get_quantifier_num_no_patterns(Z3_context c, Z3_ast a)

Return number of no_patterns used in quantifier.

Z3_ast Z3_API Z3_mk_fpa_round_toward_positive(Z3_context c)

Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.

Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(Z3_context c, Z3_sort t, unsigned idx)

Return idx'th constructor.

void Z3_API Z3_ast_vector_resize(Z3_context c, Z3_ast_vector v, unsigned n)

Resize the AST vector v.

Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq)

Create an empty sequence of the sequence sort seq.

Z3_probe Z3_API Z3_mk_probe(Z3_context c, Z3_string name)

Return a probe associated with the given name. The complete list of probes may be obtained using the ...

Z3_ast Z3_API Z3_mk_quantifier_const_ex(Z3_context c, bool is_forall, unsigned weight, Z3_symbol quantifier_id, Z3_symbol skolem_id, unsigned num_bound, Z3_app const bound[], unsigned num_patterns, Z3_pattern const patterns[], unsigned num_no_patterns, Z3_ast const no_patterns[], Z3_ast body)

Create a universal or existential quantifier using a list of constants that will form the set of boun...

Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t)

Return a tactic that applies t to a given goal is the probe p evaluates to true. If p evaluates to fa...

Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s)

Check if suffix is a suffix of s.

Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[])

Create a pattern for quantifier instantiation.

Z3_symbol_kind Z3_API Z3_get_symbol_kind(Z3_context c, Z3_symbol s)

Return Z3_INT_SYMBOL if the symbol was constructed using Z3_mk_int_symbol, and Z3_STRING_SYMBOL if th...

Z3_sort Z3_API Z3_get_re_sort_basis(Z3_context c, Z3_sort s)

Retrieve basis sort for regex sort.

void Z3_API Z3_solver_set_initial_value(Z3_context c, Z3_solver s, Z3_ast v, Z3_ast val)

provide an initialization hint to the solver. The initialization hint is used to calibrate an initial...

bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a)

Determine if ast is a lambda expression.

Z3_solver Z3_API Z3_solver_translate(Z3_context source, Z3_solver s, Z3_context target)

Copy a solver s from the context source to the context target.

void Z3_API Z3_optimize_push(Z3_context c, Z3_optimize d)

Create a backtracking point.

Z3_string Z3_API Z3_solver_get_help(Z3_context c, Z3_solver s)

Return a string describing all solver available parameters.

unsigned Z3_API Z3_stats_get_uint_value(Z3_context c, Z3_stats s, unsigned idx)

Return the unsigned value of the given statistical data.

void Z3_API Z3_probe_inc_ref(Z3_context c, Z3_probe p)

Increment the reference counter of the given probe.

Z3_sort Z3_API Z3_get_array_sort_domain(Z3_context c, Z3_sort t)

Return the domain of the given array sort. In the case of a multi-dimensional array,...

void Z3_API Z3_solver_propagate_register_cb(Z3_context c, Z3_solver_callback cb, Z3_ast e)

register an expression to propagate on with the solver. Only expressions of type Bool and type Bit-Ve...

Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)

Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...

Z3_string Z3_API Z3_get_probe_name(Z3_context c, unsigned i)

Return the name of the i probe.

Z3_ast Z3_API Z3_func_decl_to_ast(Z3_context c, Z3_func_decl f)

Convert a Z3_func_decl into Z3_ast. This is just type casting.

Z3_sort Z3_API Z3_mk_fpa_sort_16(Z3_context c)

Create the half-precision (16-bit) FloatingPoint sort.

void Z3_API Z3_add_const_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast a)

Add a constant interpretation.

Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)

Standard two's complement addition.

unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a)

Return which root of the polynomial the algebraic number represents.

void Z3_API Z3_params_dec_ref(Z3_context c, Z3_params p)

Decrement the reference counter of the given parameter set.

void Z3_API Z3_fixedpoint_dec_ref(Z3_context c, Z3_fixedpoint d)

Decrement the reference counter of the given fixedpoint context.

Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i)

Return the i-th argument of the given application.

Z3_ast Z3_API Z3_mk_str_lt(Z3_context c, Z3_ast prefix, Z3_ast s)

Check if s1 is lexicographically strictly less than s2.

Z3_ast Z3_API Z3_solver_congruence_root(Z3_context c, Z3_solver s, Z3_ast a)

retrieve the congruence closure root of an expression. The root is retrieved relative to the state wh...

Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m)

Convert the given model into a string.

Z3_string Z3_API Z3_tactic_get_help(Z3_context c, Z3_tactic t)

Return a string containing a description of parameters accepted by the given tactic.

Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix, unsigned domain_size, Z3_sort const domain[], Z3_sort range)

Declare a fresh constant or function.

void Z3_API Z3_solver_propagate_final(Z3_context c, Z3_solver s, Z3_final_eh final_eh)

register a callback on final check. This provides freedom to the propagator to delay actions or imple...

unsigned Z3_API Z3_ast_map_size(Z3_context c, Z3_ast_map m)

Return the size of the given map.

unsigned Z3_API Z3_param_descrs_size(Z3_context c, Z3_param_descrs p)

Return the number of parameters in the given parameter description set.

Z3_ast_vector Z3_API Z3_parse_smtlib2_string(Z3_context c, Z3_string str, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])

Parse the given string using the SMT-LIB2 parser.

void Z3_API Z3_solver_register_on_clause(Z3_context c, Z3_solver s, void *user_context, Z3_on_clause_eh on_clause_eh)

register a callback to that retrieves assumed, inferred and deleted clauses during search.

Z3_string Z3_API Z3_goal_to_dimacs_string(Z3_context c, Z3_goal g, bool include_names)

Convert a goal into a DIMACS formatted string. The goal must be in CNF. You can convert a goal to CNF...

Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)

Create less than.

Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast(Z3_context c, Z3_ast a, unsigned i)

Return i'th no_pattern.

double Z3_API Z3_stats_get_double_value(Z3_context c, Z3_stats s, unsigned idx)

Return the double value of the given statistical data.

Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)

Unsigned greater than.

Z3_lbool Z3_API Z3_fixedpoint_query(Z3_context c, Z3_fixedpoint d, Z3_ast query)

Pose a query against the asserted rules.

unsigned Z3_API Z3_get_num_tactics(Z3_context c)

Return the number of builtin tactics available in Z3.

unsigned Z3_API Z3_goal_depth(Z3_context c, Z3_goal g)

Return the depth of the given goal. It tracks how many transformations were applied to it.

Z3_string Z3_API Z3_get_symbol_string(Z3_context c, Z3_symbol s)

Return the symbol name.

Z3_simplifier Z3_API Z3_mk_simplifier(Z3_context c, Z3_string name)

Return a simplifier associated with the given name. The complete list of simplifiers may be obtained ...

Z3_ast Z3_API Z3_pattern_to_ast(Z3_context c, Z3_pattern p)

Convert a Z3_pattern into Z3_ast. This is just type casting.

Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)

Bitwise negation.

Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)

Unsigned remainder.

Z3_ast Z3_API Z3_mk_seq_foldli(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast a, Z3_ast s)

Create a fold with index tracking of the function f over the sequence s with accumulator a starting a...

void Z3_API Z3_mk_datatypes(Z3_context c, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort sorts[], Z3_constructor_list constructor_lists[])

Create mutually recursive datatypes.

bool Z3_API Z3_fpa_is_numeral_negative(Z3_context c, Z3_ast t)

Checks whether a given floating-point numeral is negative.

unsigned Z3_API Z3_func_interp_get_arity(Z3_context c, Z3_func_interp f)

Return the arity (number of arguments) of the given function interpretation.

Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s)

Return the set of non units in the solver state.

Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq)

Create a regular expression that accepts the sequence seq.

Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)

Standard two's complement subtraction.

Z3_ast_vector Z3_API Z3_optimize_get_objectives(Z3_context c, Z3_optimize o)

Return objectives on the optimization context. If the objective function is a max-sat objective it is...

bool Z3_API Z3_get_finite_domain_sort_size(Z3_context c, Z3_sort s, uint64_t *r)

Store the size of the sort in r. Return false if the call failed. That is, Z3_get_sort_kind(s) == Z3_...

Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset)

Return index of the first occurrence of substr in s starting from offset offset. If s does not contai...

Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)

Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...

Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)

Create an AST node representing arg1 ^ arg2.

Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])

Concatenate sequences.

Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c, Z3_symbol name, unsigned n, Z3_symbol const enum_names[], Z3_func_decl enum_consts[], Z3_func_decl enum_testers[])

Create a enumeration sort.

Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)

Create the range regular expression over two sequences of length 1.

unsigned Z3_API Z3_get_bv_sort_size(Z3_context c, Z3_sort t)

Return the size of the given bit-vector sort.

Z3_ast_vector Z3_API Z3_fixedpoint_get_rules(Z3_context c, Z3_fixedpoint f)

Retrieve set of rules from fixedpoint context.

Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)

Check for set membership.

void Z3_API Z3_ast_vector_dec_ref(Z3_context c, Z3_ast_vector v)

Decrement the reference counter of the given AST vector.

Z3_ast Z3_API Z3_fpa_get_numeral_significand_bv(Z3_context c, Z3_ast t)

Retrieves the significand of a floating-point literal as a bit-vector expression.

Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p)

Return a tactic that fails if the probe p evaluates to false.

void Z3_API Z3_func_interp_dec_ref(Z3_context c, Z3_func_interp f)

Decrement the reference counter of the given Z3_func_interp object.

Z3_sort Z3_API Z3_mk_fpa_sort_quadruple(Z3_context c)

Create the quadruple-precision (128-bit) FloatingPoint sort.

void Z3_API Z3_probe_dec_ref(Z3_context c, Z3_probe p)

Decrement the reference counter of the given probe.

void Z3_API Z3_params_inc_ref(Z3_context c, Z3_params p)

Increment the reference counter of the given parameter set.

void Z3_API Z3_set_error_handler(Z3_context c, Z3_error_handler h)

Register a Z3 error handler.

Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])

Create an AST node representing distinct(args[0], ..., args[num_args-1]).

Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s)

Check if prefix is a prefix of s.

Z3_config Z3_API Z3_mk_config(void)

Create a configuration object for the Z3 context object.

void Z3_API Z3_set_param_value(Z3_config c, Z3_string param_id, Z3_string param_value)

Set a configuration parameter.

Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz)

Create a bit-vector type of the given size.

Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)

Unsigned less than.

void Z3_API Z3_ast_map_dec_ref(Z3_context c, Z3_ast_map m)

Decrement the reference counter of the given AST map.

Z3_fixedpoint Z3_API Z3_mk_fixedpoint(Z3_context c)

Create a new fixedpoint context.

Z3_string Z3_API Z3_params_to_string(Z3_context c, Z3_params p)

Convert a parameter set into a string. This function is mainly used for printing the contents of a pa...

Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_away(Z3_context c)

Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.

Z3_param_descrs Z3_API Z3_get_global_param_descrs(Z3_context c)

Retrieve description of global parameters.

void Z3_API Z3_solver_propagate_init(Z3_context c, Z3_solver s, void *user_context, Z3_push_eh push_eh, Z3_pop_eh pop_eh, Z3_fresh_eh fresh_eh)

register a user-propagator with the solver.

Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i)

Return the i-th constant in the given model.

void Z3_API Z3_tactic_dec_ref(Z3_context c, Z3_tactic g)

Decrement the reference counter of the given tactic.

Z3_ast Z3_API Z3_translate(Z3_context source, Z3_ast a, Z3_context target)

Translate/Copy the AST a from context source to context target. AST a must have been created using co...

Z3_solver Z3_API Z3_mk_simple_solver(Z3_context c)

Create a new incremental solver.

Z3_sort Z3_API Z3_get_range(Z3_context c, Z3_func_decl d)

Return the range of the given declaration.

void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)

Set a global (or module) parameter. This setting is shared by all Z3 contexts.

void Z3_API Z3_optimize_assert(Z3_context c, Z3_optimize o, Z3_ast a)

Assert hard constraint to the optimization context.

Z3_ast_vector Z3_API Z3_model_get_sort_universe(Z3_context c, Z3_model m, Z3_sort s)

Return the finite set of distinct values that represent the interpretation for sort s.

Z3_string Z3_API Z3_benchmark_to_smtlib_string(Z3_context c, Z3_string name, Z3_string logic, Z3_string status, Z3_string attributes, unsigned num_assumptions, Z3_ast const assumptions[], Z3_ast formula)

Convert the given benchmark into SMT-LIB formatted string.

Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re)

Create the regular language re*.

Z3_ast Z3_API Z3_mk_char(Z3_context c, unsigned ch)

Create a character literal.

void Z3_API Z3_func_entry_dec_ref(Z3_context c, Z3_func_entry e)

Decrement the reference counter of the given Z3_func_entry object.

unsigned Z3_API Z3_stats_size(Z3_context c, Z3_stats s)

Return the number of statistical data in s.

Z3_string Z3_API Z3_optimize_to_string(Z3_context c, Z3_optimize o)

Print the current context as a string.

void Z3_API Z3_append_log(Z3_string string)

Append user-defined string to interaction log.

Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a)

Return body of quantifier.

void Z3_API Z3_param_descrs_dec_ref(Z3_context c, Z3_param_descrs p)

Decrement the reference counter of the given parameter description set.

Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re)

Create an universal regular expression of sort re.

Z3_model Z3_API Z3_mk_model(Z3_context c)

Create a fresh model object. It has reference count 0.

Z3_symbol Z3_API Z3_get_decl_name(Z3_context c, Z3_func_decl d)

Return the constant declaration name as a symbol.

Z3_ast Z3_API Z3_mk_seq_mapi(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast s)

Create a map of the function f over the sequence s starting at index i.

Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)

Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

Z3_string Z3_API Z3_stats_get_key(Z3_context c, Z3_stats s, unsigned idx)

Return the key (a string) for a particular statistical data.

Z3_ast Z3_API Z3_mk_re_diff(Z3_context c, Z3_ast re1, Z3_ast re2)

Create the difference of regular expressions.

unsigned Z3_API Z3_fixedpoint_get_num_levels(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred)

Query the PDR engine for the maximal levels properties are known about predicate.

Z3_ast Z3_API Z3_mk_fpa_to_real(Z3_context c, Z3_ast t)

Conversion of a floating-point term into a real-numbered term.

Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re)

Create an empty regular expression of sort re.

Z3_sort Z3_API Z3_mk_fpa_sort_128(Z3_context c)

Create the quadruple-precision (128-bit) FloatingPoint sort.

Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)

Bitwise and.

Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(Z3_context c)

Return the parameter description set for the simplify procedure.

Z3_sort Z3_API Z3_mk_finite_domain_sort(Z3_context c, Z3_symbol name, uint64_t size)

Create a named finite domain sort.

Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])

Create an AST node representing args[0] + ... + args[num_args-1].

Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a)

Return the kind of the given AST.

Z3_ast_vector Z3_API Z3_parse_smtlib2_file(Z3_context c, Z3_string file_name, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])

Similar to Z3_parse_smtlib2_string, but reads the benchmark from a file.

Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)

Two's complement signed remainder (sign follows divisor).

Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2)

Return a tactic that applies t1 to a given goal if the probe p evaluates to true, and t2 if p evaluat...

Z3_model Z3_API Z3_model_translate(Z3_context c, Z3_model m, Z3_context dst)

translate model from context c to context dst.

Z3_string Z3_API Z3_fixedpoint_to_string(Z3_context c, Z3_fixedpoint f, unsigned num_queries, Z3_ast queries[])

Print the current rules and background axioms as a string.

void Z3_API Z3_solver_get_levels(Z3_context c, Z3_solver s, Z3_ast_vector literals, unsigned sz, unsigned levels[])

retrieve the decision depth of Boolean literals (variables or their negations). Assumes a check-sat c...

void Z3_API Z3_get_version(unsigned *major, unsigned *minor, unsigned *build_number, unsigned *revision_number)

Return Z3 version number information.

Z3_ast Z3_API Z3_fixedpoint_get_cover_delta(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred)

Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)

Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.

Z3_apply_result Z3_API Z3_tactic_apply_ex(Z3_context c, Z3_tactic t, Z3_goal g, Z3_params p)

Apply tactic t to the goal g using the parameter set p.

Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)

Create an n bit bit-vector from the integer argument t1.

void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a)

Assert a constraint into the solver.

Z3_tactic Z3_API Z3_mk_tactic(Z3_context c, Z3_string name)

Return a tactic associated with the given name. The complete list of tactics may be obtained using th...

Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)

Floating-point absolute value.

unsigned Z3_API Z3_ast_vector_size(Z3_context c, Z3_ast_vector v)

Return the size of the given AST vector.

Z3_optimize Z3_API Z3_mk_optimize(Z3_context c)

Create a new optimize context.

void Z3_API Z3_parser_context_add_sort(Z3_context c, Z3_parser_context pc, Z3_sort s)

Add a sort declaration.

unsigned Z3_API Z3_get_quantifier_weight(Z3_context c, Z3_ast a)

Obtain weight of quantifier.

bool Z3_API Z3_model_eval(Z3_context c, Z3_model m, Z3_ast t, bool model_completion, Z3_ast *v)

Evaluate the AST node t in the given model. Return true if succeeded, and store the result in v.

unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s)

Return the number of backtracking points.

Z3_sort Z3_API Z3_get_array_sort_range(Z3_context c, Z3_sort t)

Return the range of the given array sort.

void Z3_API Z3_del_constructor_list(Z3_context c, Z3_constructor_list clist)

Reclaim memory allocated for constructor list.

Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty)

Create a variable.

unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a)

Return the number of argument of an application. If t is an constant, then the number of arguments is...

Z3_ast Z3_API Z3_substitute_funs(Z3_context c, Z3_ast a, unsigned num_funs, Z3_func_decl const from[], Z3_ast const to[])

Substitute functions in from with new expressions in to.

Z3_ast Z3_API Z3_func_entry_get_arg(Z3_context c, Z3_func_entry e, unsigned i)

Return an argument of a Z3_func_entry object.

Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)

Create an AST node representing l = r.

Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)

Pseudo-Boolean relations.

void Z3_API Z3_ast_vector_inc_ref(Z3_context c, Z3_ast_vector v)

Increment the reference counter of the given AST vector.

unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m)

Return the number of function interpretations in the given model.

void Z3_API Z3_parser_context_inc_ref(Z3_context c, Z3_parser_context pc)

Increment the reference counter of the given Z3_parser_context object.

void Z3_API Z3_dec_ref(Z3_context c, Z3_ast a)

Decrement the reference counter of the given AST. The context c should have been created using Z3_mk_...

Z3_ast_vector Z3_API Z3_solver_get_unsat_core(Z3_context c, Z3_solver s)

Retrieve the unsat core for the last Z3_solver_check_assumptions The unsat core is a subset of the as...

Z3_ast_vector Z3_API Z3_mk_ast_vector(Z3_context c)

Return an empty AST vector.

void Z3_API Z3_optimize_dec_ref(Z3_context c, Z3_optimize d)

Decrement the reference counter of the given optimize context.

Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)

Create an expression of FloatingPoint sort from three bit-vector expressions.

Z3_func_decl Z3_API Z3_mk_partial_order(Z3_context c, Z3_sort a, unsigned id)

create a partial ordering relation over signature a and index id.

Z3_ast Z3_API Z3_fpa_get_numeral_exponent_bv(Z3_context c, Z3_ast t, bool biased)

Retrieves the exponent of a floating-point literal as a bit-vector expression.

Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)

Create the empty set.

Z3_sort Z3_API Z3_mk_fpa_sort_single(Z3_context c)

Create the single-precision (32-bit) FloatingPoint sort.

Z3_ast Z3_API Z3_mk_set_has_size(Z3_context c, Z3_ast set, Z3_ast k)

Create predicate that holds if Boolean array set has k elements set to true.

Z3_string Z3_API Z3_get_tactic_name(Z3_context c, unsigned i)

Return the name of the idx tactic.

bool Z3_API Z3_is_string(Z3_context c, Z3_ast s)

Determine if s is a string constant.

Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi)

Create a regular expression loop. The supplied regular expression r is repeated between lo and hi tim...

Z3_ast Z3_API Z3_mk_char_to_int(Z3_context c, Z3_ast ch)

Create an integer (code point) from character.

Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)

Floating-point negation.

Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)

Repeat the given bit-vector up length i.

Z3_string Z3_API Z3_tactic_get_descr(Z3_context c, Z3_string name)

Return a string containing a description of the tactic with the given name.

Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re)

Create the regular language re+.

Z3_goal_prec Z3_API Z3_goal_precision(Z3_context c, Z3_goal g)

Return the "precision" of the given goal. Goals can be transformed using over and under approximation...

void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n)

Backtrack n backtracking points.

void Z3_API Z3_ast_map_erase(Z3_context c, Z3_ast_map m, Z3_ast k)

Erase a key from the map.

Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)

Coerce an integer to a real.

unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a)

Return index of de-Bruijn bound variable.

Z3_goal Z3_API Z3_mk_goal(Z3_context c, bool models, bool unsat_cores, bool proofs)

Create a goal (aka problem). A goal is essentially a set of formulas, that can be solved and/or trans...

double Z3_API Z3_get_decl_double_parameter(Z3_context c, Z3_func_decl d, unsigned idx)

Return the double value associated with an double parameter.

unsigned Z3_API Z3_get_ast_hash(Z3_context c, Z3_ast a)

Return a hash code for the given AST. The hash code is structural but two different AST objects can m...

Z3_string Z3_API Z3_optimize_get_help(Z3_context c, Z3_optimize t)

Return a string containing a description of parameters accepted by optimize.

Z3_symbol Z3_API Z3_get_sort_name(Z3_context c, Z3_sort d)

Return the sort name as a symbol.

void Z3_API Z3_params_validate(Z3_context c, Z3_params p, Z3_param_descrs d)

Validate the parameter set p against the parameter description set d.

Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(Z3_context c, Z3_sort t, unsigned idx)

Return idx'th recognizer.

Z3_sort Z3_API Z3_mk_fpa_sort_32(Z3_context c)

Create the single-precision (32-bit) FloatingPoint sort.

void Z3_API Z3_global_param_reset_all(void)

Restore the value of all global (and module) parameters. This command will not affect already created...

Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)

Create greater than.

Z3_stats Z3_API Z3_optimize_get_statistics(Z3_context c, Z3_optimize d)

Retrieve statistics information from the last call to Z3_optimize_check.

Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)

Array update.

Z3_probe Z3_API Z3_probe_gt(Z3_context x, Z3_probe p1, Z3_probe p2)

Return a probe that evaluates to "true" when the value returned by p1 is greater than the value retur...

Z3_sort Z3_API Z3_mk_fpa_sort_64(Z3_context c)

Create the double-precision (64-bit) FloatingPoint sort.

Z3_ast Z3_API Z3_solver_get_proof(Z3_context c, Z3_solver s)

Retrieve the proof for the last Z3_solver_check or Z3_solver_check_assumptions.

Z3_string Z3_API Z3_get_decl_rational_parameter(Z3_context c, Z3_func_decl d, unsigned idx)

Return the rational value, as a string, associated with a rational parameter.

unsigned Z3_API Z3_optimize_minimize(Z3_context c, Z3_optimize o, Z3_ast t)

Add a minimization constraint.

Z3_stats Z3_API Z3_fixedpoint_get_statistics(Z3_context c, Z3_fixedpoint d)

Retrieve statistics information from the last call to Z3_fixedpoint_query.

void Z3_API Z3_ast_vector_push(Z3_context c, Z3_ast_vector v, Z3_ast a)

Add the AST a in the end of the AST vector v. The size of v is increased by one.

bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2)

Compare terms.

bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a)

Determine if an ast is a universal quantifier.

void Z3_API Z3_tactic_inc_ref(Z3_context c, Z3_tactic t)

Increment the reference counter of the given tactic.

Z3_parser_context Z3_API Z3_mk_parser_context(Z3_context c)

Create a parser context.

Z3_ast_map Z3_API Z3_mk_ast_map(Z3_context c)

Return an empty mapping from AST to AST.

void Z3_API Z3_solver_from_file(Z3_context c, Z3_solver s, Z3_string file_name)

load solver assertions from a file.

Z3_ast Z3_API Z3_mk_seq_last_index(Z3_context c, Z3_ast s, Z3_ast substr)

Return index of the last occurrence of substr in s. If s does not contain substr, then the value is -...

Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)

Create an AST node representing t1 xor t2.

void Z3_API Z3_solver_propagate_eq(Z3_context c, Z3_solver s, Z3_eq_eh eq_eh)

register a callback on expression equalities.

Z3_ast Z3_API Z3_mk_string(Z3_context c, Z3_string s)

Create a string constant out of the string that is passed in The string may contain escape encoding f...

Z3_func_decl Z3_API Z3_mk_transitive_closure(Z3_context c, Z3_func_decl f)

create transitive closure of binary relation.

Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms)

Return a tactic that applies t to a given goal for ms milliseconds. If t does not terminate in ms mil...

void Z3_API Z3_apply_result_dec_ref(Z3_context c, Z3_apply_result r)

Decrement the reference counter of the given Z3_apply_result object.

Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const *args)

Map f on the argument arrays.

Z3_sort Z3_API Z3_mk_seq_sort(Z3_context c, Z3_sort s)

Create a sequence sort out of the sort for the elements.

unsigned Z3_API Z3_optimize_maximize(Z3_context c, Z3_optimize o, Z3_ast t)

Add a maximization constraint.

Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s)

Return the set of units modulo model conversion.

Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty)

Declare and create a constant.

Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s)

Create a Z3 symbol using a C string.

Z3_string Z3_API Z3_probe_get_descr(Z3_context c, Z3_string name)

Return a string containing a description of the probe with the given name.

void Z3_API Z3_param_descrs_inc_ref(Z3_context c, Z3_param_descrs p)

Increment the reference counter of the given parameter description set.

Z3_goal Z3_API Z3_apply_result_get_subgoal(Z3_context c, Z3_apply_result r, unsigned i)

Return one of the subgoals in the Z3_apply_result object returned by Z3_tactic_apply.

Z3_probe Z3_API Z3_probe_le(Z3_context x, Z3_probe p1, Z3_probe p2)

Return a probe that evaluates to "true" when the value returned by p1 is less than or equal to the va...

void Z3_API Z3_stats_dec_ref(Z3_context c, Z3_stats s)

Decrement the reference counter of the given statistics object.

Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2)

Create array extensionality index given two arrays with the same sort. The meaning is given by the ax...

Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])

Create the concatenation of the regular languages.

Z3_ast Z3_API Z3_sort_to_ast(Z3_context c, Z3_sort s)

Convert a Z3_sort into Z3_ast. This is just type casting.

Z3_func_entry Z3_API Z3_func_interp_get_entry(Z3_context c, Z3_func_interp f, unsigned i)

Return a "point" of the given function interpretation. It represents the value of f in a particular p...

Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)

Declare a recursive function.

unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t)

Return a unique identifier for t. The identifier is unique up to structural equality....

Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)

Concatenate the given bit-vectors.

Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)

Conversion of a FloatingPoint term into another term of different FloatingPoint sort.

unsigned Z3_API Z3_get_quantifier_num_bound(Z3_context c, Z3_ast a)

Return number of bound variables of quantifier.

Z3_sort Z3_API Z3_get_decl_sort_parameter(Z3_context c, Z3_func_decl d, unsigned idx)

Return the sort value associated with a sort parameter.

Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c, unsigned num_constructors, Z3_constructor const constructors[])

Create list of constructors.

Z3_apply_result Z3_API Z3_tactic_apply(Z3_context c, Z3_tactic t, Z3_goal g)

Apply tactic t to the goal g.

Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_even(Z3_context c)

Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.

void Z3_API Z3_solver_propagate_created(Z3_context c, Z3_solver s, Z3_created_eh created_eh)

register a callback when a new expression with a registered function is used by the solver The regist...

Z3_ast_vector Z3_API Z3_parser_context_from_string(Z3_context c, Z3_parser_context pc, Z3_string s)

Parse a string of SMTLIB2 commands. Return assertions.

Z3_ast Z3_API Z3_mk_app(Z3_context c, Z3_func_decl d, unsigned num_args, Z3_ast const args[])

Create a constant or function application.

Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t)

Return the sort kind (e.g., array, tuple, int, bool, etc).

Z3_stats Z3_API Z3_solver_get_statistics(Z3_context c, Z3_solver s)

Return statistics for the given solver.

Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)

Standard two's complement unary minus.

Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs, Z3_ast v)

n-ary Array update.

Z3_string Z3_API Z3_fixedpoint_get_reason_unknown(Z3_context c, Z3_fixedpoint d)

Retrieve a string that describes the last status returned by Z3_fixedpoint_query.

Z3_func_decl Z3_API Z3_mk_linear_order(Z3_context c, Z3_sort a, unsigned id)

create a linear ordering relation over signature a. The relation is identified by the index id.

Z3_string Z3_API Z3_fixedpoint_get_help(Z3_context c, Z3_fixedpoint f)

Return a string describing all fixedpoint available parameters.

Z3_sort Z3_API Z3_get_domain(Z3_context c, Z3_func_decl d, unsigned i)

Return the sort of the i-th parameter of the given function declaration.

Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re)

Check if seq is in the language generated by the regular expression re.

Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c)

Create the Boolean type.

void Z3_API Z3_params_set_symbol(Z3_context c, Z3_params p, Z3_symbol k, Z3_symbol v)

Add a symbol parameter k with value v to the parameter set p.

Z3_ast Z3_API Z3_ast_vector_get(Z3_context c, Z3_ast_vector v, unsigned i)

Return the AST at position i in the AST vector v.

Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s, bool include_names)

Convert a solver into a DIMACS formatted string.

Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a)

Convert an AST into a FUNC_DECL_AST. This is just type casting.

Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)

Take the set difference between two sets.

void Z3_API Z3_solver_propagate_decide(Z3_context c, Z3_solver s, Z3_decide_eh decide_eh)

register a callback when the solver decides to split on a registered expression. The callback may cha...

Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)

Two's complement signed division.

Z3_string Z3_API Z3_optimize_get_reason_unknown(Z3_context c, Z3_optimize d)

Retrieve a string that describes the last status returned by Z3_optimize_check.

Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)

Logical shift right.

Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx)

Return the expression value associated with an expression parameter.

Z3_pattern Z3_API Z3_get_quantifier_pattern_ast(Z3_context c, Z3_ast a, unsigned i)

Return i'th pattern.

double Z3_API Z3_probe_apply(Z3_context c, Z3_probe p, Z3_goal g)

Execute the probe over the goal. The probe always produce a double value. "Boolean" probes return 0....

void Z3_API Z3_fixedpoint_assert(Z3_context c, Z3_fixedpoint d, Z3_ast axiom)

Assert a constraint to the fixedpoint context.

void Z3_API Z3_goal_dec_ref(Z3_context c, Z3_goal g)

Decrement the reference counter of the given goal.

Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)

Create an AST node representing not(a).

void Z3_API Z3_solver_propagate_register(Z3_context c, Z3_solver s, Z3_ast e)

register an expression to propagate on with the solver. Only expressions of type Bool and type Bit-Ve...

Z3_ast Z3_API Z3_substitute_vars(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])

Substitute the variables in a with the expressions in to. For every i smaller than num_exprs,...

Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])

Create an AST node representing args[0] or ... or args[num_args-1].

Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range)

Create an array type.

Z3_tactic Z3_API Z3_tactic_or_else(Z3_context c, Z3_tactic t1, Z3_tactic t2)

Return a tactic that first applies t1 to a given goal, if it fails then returns the result of t2 appl...

void Z3_API Z3_model_inc_ref(Z3_context c, Z3_model m)

Increment the reference counter of the given model.

Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)

Extract subsequence starting at offset of length.

Z3_sort Z3_API Z3_mk_type_variable(Z3_context c, Z3_symbol s)

Create a type variable.

Z3_sort Z3_API Z3_mk_fpa_sort(Z3_context c, unsigned ebits, unsigned sbits)

Create a FloatingPoint sort.

void Z3_API Z3_fixedpoint_set_params(Z3_context c, Z3_fixedpoint f, Z3_params p)

Set parameters on fixedpoint context.

void Z3_API Z3_optimize_from_string(Z3_context c, Z3_optimize o, Z3_string s)

Parse an SMT-LIB2 string with assertions, soft constraints and optimization objectives....

Z3_string Z3_API Z3_fpa_get_numeral_significand_string(Z3_context c, Z3_ast t)

Return the significand value of a floating-point numeral as a string.

Z3_solver Z3_API Z3_solver_add_simplifier(Z3_context c, Z3_solver solver, Z3_simplifier simplifier)

Attach simplifier to a solver. The solver will use the simplifier for incremental pre-processing.

Z3_ast Z3_API Z3_fixedpoint_get_answer(Z3_context c, Z3_fixedpoint d)

Retrieve a formula that encodes satisfying answers to the query.

Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s)

Integer to string conversion.

Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)

Return numeral value, as a decimal string of a numeric constant term.

void Z3_API Z3_solver_propagate_fixed(Z3_context c, Z3_solver s, Z3_fixed_eh fixed_eh)

register a callback for when an expression is bound to a fixed value. The supported expression types ...

Z3_ast Z3_API Z3_mk_seq_map(Z3_context c, Z3_ast f, Z3_ast s)

Create a map of the function f over the sequence s.

Z3_ast Z3_API Z3_fpa_get_numeral_sign_bv(Z3_context c, Z3_ast t)

Retrieves the sign of a floating-point literal as a bit-vector expression.

void Z3_API Z3_fixedpoint_register_relation(Z3_context c, Z3_fixedpoint d, Z3_func_decl f)

Register relation as Fixedpoint defined. Fixedpoint defined relations have least-fixedpoint semantics...

Z3_ast Z3_API Z3_mk_char_is_digit(Z3_context c, Z3_ast ch)

Create a check if the character is a digit.

void Z3_API Z3_fixedpoint_add_cover(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred, Z3_ast property)

Add property about the predicate pred. Add a property of predicate pred at level. It gets pushed forw...

void Z3_API Z3_func_interp_add_entry(Z3_context c, Z3_func_interp fi, Z3_ast_vector args, Z3_ast value)

add a function entry to a function interpretation.

Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)

Unsigned greater than or equal to.

Z3_lbool Z3_API Z3_fixedpoint_query_relations(Z3_context c, Z3_fixedpoint d, unsigned num_relations, Z3_func_decl const relations[])

Pose multiple queries against the asserted rules.

Z3_string Z3_API Z3_apply_result_to_string(Z3_context c, Z3_apply_result r)

Convert the Z3_apply_result object returned by Z3_tactic_apply into a string.

Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s)

Convert a solver into a string.

void Z3_API Z3_optimize_register_model_eh(Z3_context c, Z3_optimize o, Z3_model m, void *ctx, Z3_model_eh model_eh)

register a model event handler for new models.

Z3_ast Z3_API Z3_mk_seq_foldl(Z3_context c, Z3_ast f, Z3_ast a, Z3_ast s)

Create a fold of the function f over the sequence s with accumulator a.

bool Z3_API Z3_fpa_is_numeral_normal(Z3_context c, Z3_ast t)

Checks whether a given floating-point numeral is normal.

Z3_string Z3_API Z3_solver_get_reason_unknown(Z3_context c, Z3_solver s)

Return a brief justification for an "unknown" result (i.e., Z3_L_UNDEF) for the commands Z3_solver_ch...

Z3_string Z3_API Z3_get_numeral_binary_string(Z3_context c, Z3_ast a)

Return numeral value, as a binary string of a numeric constant term.

Z3_sort Z3_API Z3_get_quantifier_bound_sort(Z3_context c, Z3_ast a, unsigned i)

Return sort of the i'th bound variable.

void Z3_API Z3_disable_trace(Z3_string tag)

Disable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.

Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max)

Return a tactic that keeps applying t until the goal is not modified anymore or the maximum number of...

Z3_ast Z3_API Z3_goal_formula(Z3_context c, Z3_goal g, unsigned idx)

Return a formula from the given goal.

Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o, unsigned num_assumptions, Z3_ast const assumptions[])

Check consistency and produce optimal values.

Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i)

Create a Z3 symbol using an integer.

Z3_ast Z3_API Z3_mk_fpa_round_toward_zero(Z3_context c)

Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.

Z3_ast Z3_API Z3_mk_char_from_bv(Z3_context c, Z3_ast bv)

Create a character from a bit-vector (code point).

unsigned Z3_API Z3_func_interp_get_num_entries(Z3_context c, Z3_func_interp f)

Return the number of entries in the given function interpretation.

void Z3_API Z3_ast_map_insert(Z3_context c, Z3_ast_map m, Z3_ast k, Z3_ast v)

Store/Replace a new key, value pair in the given map.

Z3_probe Z3_API Z3_probe_const(Z3_context x, double val)

Return a probe that always evaluates to val.

Z3_ast Z3_API Z3_mk_fpa_zero(Z3_context c, Z3_sort s, bool negative)

Create a floating-point zero of sort s.

Z3_string Z3_API Z3_goal_to_string(Z3_context c, Z3_goal g)

Convert a goal into a string.

Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)

Pseudo-Boolean relations.

bool Z3_API Z3_is_eq_sort(Z3_context c, Z3_sort s1, Z3_sort s2)

compare sorts.

void Z3_API Z3_del_config(Z3_config c)

Delete the given configuration object.

void Z3_API Z3_inc_ref(Z3_context c, Z3_ast a)

Increment the reference counter of the given AST. The context c should have been created using Z3_mk_...

Z3_tactic Z3_API Z3_tactic_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)

Return a tactic that applies t1 to a given goal and t2 to every subgoal produced by t1.

Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1)

Coerce a real to an integer.

Z3_func_interp Z3_API Z3_model_get_func_interp(Z3_context c, Z3_model m, Z3_func_decl f)

Return the interpretation of the function f in the model m. Return NULL, if the model does not assign...

Z3_sort Z3_API Z3_mk_fpa_sort_double(Z3_context c)

Create the double-precision (64-bit) FloatingPoint sort.

void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s)

Increment the reference counter of the given solver.

bool Z3_API Z3_solver_next_split(Z3_context c, Z3_solver_callback cb, Z3_ast t, unsigned idx, Z3_lbool phase)

Z3_symbol Z3_API Z3_get_quantifier_id(Z3_context c, Z3_ast a)

Obtain id of quantifier.

Z3_ast Z3_API Z3_mk_string_to_code(Z3_context c, Z3_ast a)

String to code conversion.

Z3_sort Z3_API Z3_mk_string_sort(Z3_context c)

Create a sort for unicode strings.

Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2)

Rotate bits of t1 to the right t2 times.

Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)

Return numeral as a string in decimal notation. The result has at most precision decimal places.

Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)

Return the sort of an AST node.

Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(Z3_context c, Z3_sort t, unsigned idx_c, unsigned idx_a)

Return idx_a'th accessor for the idx_c'th constructor.

Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)

Take disjunction of bits in vector, return vector of length 1.

Z3_ast Z3_API Z3_mk_seq_nth(Z3_context c, Z3_ast s, Z3_ast index)

Retrieve from s the element positioned at position index. The function is under-specified if the inde...

bool Z3_API Z3_fpa_is_numeral_inf(Z3_context c, Z3_ast t)

Checks whether a given floating-point numeral is a +oo or -oo.

Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee)

Check if container contains containee.

void Z3_API Z3_ast_map_reset(Z3_context c, Z3_ast_map m)

Remove all keys from the given map.

bool Z3_API Z3_fpa_is_numeral_zero(Z3_context c, Z3_ast t)

Checks whether a given floating-point numeral is +zero or -zero.

void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s)

Remove all assertions from the solver.

bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a)

Return true if the given AST is a real algebraic number.

expr range(expr const &lo, expr const &hi)

def fpIsNegative(a, ctx=None)

def fpFP(sgn, exp, sig, ctx=None)

def fpToFP(a1, a2=None, a3=None, ctx=None)

def PiecewiseLinearOrder(a, index)

def fpRealToFP(rm, v, sort, ctx=None)

def fpUnsignedToFP(rm, v, sort, ctx=None)

def fpAdd(rm, a, b, ctx=None)

def RealVarVector(n, ctx=None)

def RoundNearestTiesToEven(ctx=None)

def fpRoundToIntegral(rm, a, ctx=None)

def BVMulNoOverflow(a, b, signed)

def parse_smt2_string(s, sorts={}, decls={}, ctx=None)

def BVSDivNoOverflow(a, b)

def get_default_rounding_mode(ctx=None)

def fpFPToFP(rm, v, sort, ctx=None)

def simplify(a, *arguments, **keywords)

Utils.

def ParThen(t1, t2, ctx=None)

def substitute_vars(t, *m)

def substitute_funs(t, *m)

def user_prop_push(ctx, cb)

def fpToReal(x, ctx=None)

def BoolVector(prefix, sz, ctx=None)

def BitVec(name, bv, ctx=None)

def Repeat(t, max=4294967295, ctx=None)

def BitVecs(names, bv, ctx=None)

def DeclareSort(name, ctx=None)

def With(t, *args, **keys)

def args2params(arguments, keywords, ctx=None)

def PbEq(args, k, ctx=None)

def fpSqrt(rm, a, ctx=None)

def Reals(names, ctx=None)

def fpGEQ(a, b, ctx=None)

def FiniteDomainVal(val, sort, ctx=None)

def set_default_rounding_mode(rm, ctx=None)

def z3_error_handler(c, e)

def TryFor(t, ms, ctx=None)

def simplify_param_descrs()

def ensure_prop_closures()

def fpIsPositive(a, ctx=None)

def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])

def set_option(*args, **kws)

def CharVal(ch, ctx=None)

def Extract(high, low, a)

def BVAddNoUnderflow(a, b)

def get_default_fp_sort(ctx=None)

def fpIsZero(a, ctx=None)

def Range(lo, hi, ctx=None)

def set_param(*args, **kws)

def Bools(names, ctx=None)

def fpToFPUnsigned(rm, x, s, ctx=None)

def CharToInt(ch, ctx=None)

def FloatQuadruple(ctx=None)

def fpToUBV(rm, x, s, ctx=None)

def fpMax(a, b, ctx=None)

def AllChar(regex_sort, ctx=None)

def FPVal(sig, exp=None, fps=None, ctx=None)

def solve_using(s, *args, **keywords)

def FloatDouble(ctx=None)

def LinearOrder(a, index)

def DeclareTypeVar(name, ctx=None)

def probe_description(name, ctx=None)

def IndexOf(s, substr, offset=None)

def user_prop_fixed(ctx, cb, id, value)

def SimpleSolver(ctx=None, logFile=None)

def FreshInt(prefix="x", ctx=None)

def SolverFor(logic, ctx=None, logFile=None)

def FreshBool(prefix="b", ctx=None)

def BVAddNoOverflow(a, b, signed)

def SubString(s, offset, length)

def RecAddDefinition(f, args, body)

def fpRem(a, b, ctx=None)

def BitVecVal(val, bv, ctx=None)

def If(a, b, c, ctx=None)

def fpSignedToFP(rm, v, sort, ctx=None)

def BV2Int(a, is_signed=False)

def Cond(p, t1, t2, ctx=None)

def PartialOrder(a, index)

def RoundNearestTiesToAway(ctx=None)

def IntVector(prefix, sz, ctx=None)

def FPs(names, fpsort, ctx=None)

def BVSubNoOverflow(a, b)

def user_prop_decide(ctx, cb, t, idx, phase)

def user_prop_pop(ctx, cb, num_scopes)

def solve(*args, **keywords)

def FloatSingle(ctx=None)

def on_clause_eh(ctx, p, n, dep, clause)

def RealVar(idx, ctx=None)

def SubSeq(s, offset, length)

def fpNEQ(a, b, ctx=None)

def Ints(names, ctx=None)

def fpIsNormal(a, ctx=None)

def RatVal(a, b, ctx=None)

def DatatypeSort(name, ctx=None)

def fpMin(a, b, ctx=None)

def EnumSort(name, values, ctx=None)

def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])

def fpSub(rm, a, b, ctx=None)

def CharIsDigit(ch, ctx=None)

def is_finite_domain_sort(s)

def LastIndexOf(s, substr)

def parse_smt2_file(f, sorts={}, decls={}, ctx=None)

def RealVector(prefix, sz, ctx=None)

def user_prop_created(ctx, cb, id)

def is_finite_domain_value(a)

def fpToIEEEBV(x, ctx=None)

def user_prop_fresh(ctx, _new_ctx)

def FreshConst(sort, prefix="c")

def Implies(a, b, ctx=None)

def RoundTowardZero(ctx=None)

def RealVal(val, ctx=None)

def is_algebraic_value(a)

def String(name, ctx=None)

def SeqFoldLeftI(f, i, a, s)

def user_prop_final(ctx, cb)

def fpLEQ(a, b, ctx=None)

def FiniteDomainSort(name, sz, ctx=None)

def fpDiv(rm, a, b, ctx=None)

def user_prop_eq(ctx, cb, x, y)

def FP(name, fpsort, ctx=None)

def BVSubNoUnderflow(a, b, signed)

def RecFunction(name, *sig)

def user_prop_diseq(ctx, cb, x, y)

def fpBVToFP(v, sort, ctx=None)

def RoundTowardNegative(ctx=None)

def CharToBv(ch, ctx=None)

def FPSort(ebits, sbits, ctx=None)

def tactic_description(name, ctx=None)

def Strings(names, ctx=None)

def BVMulNoUnderflow(a, b)

def TupleSort(name, sorts, ctx=None)

def PropagateFunction(name, *sig)

def fpMul(rm, a, b, ctx=None)

def StringVal(s, ctx=None)

def to_symbol(s, ctx=None)

def ParAndThen(t1, t2, ctx=None)

def RoundTowardPositive(ctx=None)

def BoolVal(val, ctx=None)

def FreshReal(prefix="b", ctx=None)

def fpFMA(rm, a, b, c, ctx=None)

def set_default_fp_sort(ebits, sbits, ctx=None)

def fpIsSubnormal(a, ctx=None)

def DisjointSum(name, sorts, ctx=None)

def fpToSBV(rm, x, s, ctx=None)

def BitVecSort(sz, ctx=None)

def fpInfinity(s, negative)

def IntVal(val, ctx=None)

def prove(claim, show=False, **keywords)


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4