Create the absolute value of an arithmetic expression
Definition at line 9065 of file z3py.py.
9066 """Create the absolute value of an arithmetic expression""" 9067 return If(arg > 0, arg, -arg)
def If(a, b, c, ctx=None)
◆ AllChar() def z3py.AllChar ( regex_sort, ctx =None
)
Create a regular expression that accepts all single character strings
Definition at line 11471 of file z3py.py.
11471 def AllChar(regex_sort, ctx=None):
11472 """Create a regular expression that accepts all single character strings 11474 returnReRef(
Z3_mk_re_allchar(regex_sort.ctx_ref(), regex_sort.ast), regex_sort.ctx)
Z3_ast Z3_API Z3_mk_re_allchar(Z3_context c, Z3_sort regex_sort)
Create a regular expression that accepts all singleton sequences of the regular expression sort.
def AllChar(regex_sort, ctx=None)
◆ And()Create a Z3 and-expression or and-probe. >>> p, q, r = Bools('p q r') >>> And(p, q, r) And(p, q, r) >>> P = BoolVector('p', 5) >>> And(P) And(p__0, p__1, p__2, p__3, p__4)
Definition at line 1889 of file z3py.py.
1890 """Create a Z3 and-expression or and-probe. 1892 >>> p, q, r = Bools('p q r') 1895 >>> P = BoolVector('p', 5) 1897 And(p__0, p__1, p__2, p__3, p__4) 1901last_arg = args[len(args) - 1]
1902 ifisinstance(last_arg, Context):
1903ctx = args[len(args) - 1]
1904args = args[:len(args) - 1]
1905 eliflen(args) == 1
andisinstance(args[0], AstVector):
1907args = [a
fora
inargs[0]]
1910args = _get_args(args)
1911ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
1913_z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression or probe")
1914 if_has_probe(args):
1915 return_probe_and(args, ctx)
1917args = _coerce_expr_list(args, ctx)
1918_args, sz = _to_ast_array(args)
1919 returnBoolRef(
Z3_mk_and(ctx.ref(), sz, _args), ctx)
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].
Referenced by BoolRef.__and__(), Fixedpoint.add_rule(), Goal.as_expr(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), and Fixedpoint.update_rule().
◆ AndThen() def z3py.AndThen ( * ts, ** ks )Return a tactic that applies the tactics in `*ts` in sequence. >>> x, y = Ints('x y') >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs')) >>> t(And(x == 0, y > x + 1)) [[Not(y <= 1)]] >>> t(And(x == 0, y > x + 1)).as_expr() Not(y <= 1)
Definition at line 8430 of file z3py.py.
8431 """Return a tactic that applies the tactics in `*ts` in sequence. 8433 >>> x, y = Ints('x y') 8434 >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs')) 8435 >>> t(And(x == 0, y > x + 1)) 8437 >>> t(And(x == 0, y > x + 1)).as_expr() 8441_z3_assert(len(ts) >= 2,
"At least two arguments expected")
8442ctx = ks.get(
"ctx",
None)
8445 fori
in range(num - 1):
8446r = _and_then(r, ts[i + 1], ctx)
expr range(expr const &lo, expr const &hi)
Referenced by Then().
◆ append_log() def z3py.append_log ( s )Append user-defined string to interaction log.
Definition at line 119 of file z3py.py.
120 """Append user-defined string to interaction log. """void Z3_API Z3_append_log(Z3_string string)
Append user-defined string to interaction log.
◆ args2params() def z3py.args2params ( arguments, keywords, ctx =None
)
Convert python arguments into a Z3_params object. A ':' is added to the keywords, and '_' is replaced with '-' >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True}) (params model true relevancy 2 elim_and true)
Definition at line 5512 of file z3py.py.
5513 """Convert python arguments into a Z3_params object. 5514 A ':' is added to the keywords, and '_' is replaced with '-' 5516 >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True}) 5517 (params model true relevancy 2 elim_and true) 5520_z3_assert(len(arguments) % 2 == 0,
"Argument list must have an even number of elements.")
def args2params(arguments, keywords, ctx=None)
Referenced by Tactic.apply(), Solver.set(), Fixedpoint.set(), Optimize.set(), simplify(), Simplifier.using_params(), and With().
◆ Array() def z3py.Array ( name, * sorts )Return an array constant named `name` with the given domain and range sorts. >>> a = Array('a', IntSort(), IntSort()) >>> a.sort() Array(Int, Int) >>> a[0] a[0]
Definition at line 4779 of file z3py.py.
4779 def Array(name, *sorts):
4780 """Return an array constant named `name` with the given domain and range sorts. 4782 >>> a = Array('a', IntSort(), IntSort())Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty)
Declare and create a constant.
def to_symbol(s, ctx=None)
◆ ArraySort() def z3py.ArraySort ( * sig )Return the Z3 array sort with the given domain and range sorts. >>> A = ArraySort(IntSort(), BoolSort()) >>> A Array(Int, Bool) >>> A.domain() Int >>> A.range() Bool >>> AA = ArraySort(IntSort(), A) >>> AA Array(Int, Array(Int, Bool))
Definition at line 4746 of file z3py.py.
4747 """Return the Z3 array sort with the given domain and range sorts. 4749 >>> A = ArraySort(IntSort(), BoolSort()) 4756 >>> AA = ArraySort(IntSort(), A) 4758 Array(Int, Array(Int, Bool)) 4760sig = _get_args(sig)
4762_z3_assert(len(sig) > 1,
"At least two arguments expected")
4763arity = len(sig) - 1
4768_z3_assert(
is_sort(s),
"Z3 sort expected")
4769_z3_assert(s.ctx == r.ctx,
"Context mismatch")
4773dom = (Sort * arity)()
4774 fori
in range(arity):
Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const *domain, Z3_sort range)
Create an array type with N arguments.
Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range)
Create an array type.
Referenced by Array(), Context.MkArraySort(), and SetSort().
◆ AtLeast() def z3py.AtLeast ( * args )Create an at-least Pseudo-Boolean k constraint. >>> a, b, c = Bools('a b c') >>> f = AtLeast(a, b, c, 2)
Definition at line 9088 of file z3py.py.
9089 """Create an at-least Pseudo-Boolean k constraint. 9091 >>> a, b, c = Bools('a b c') 9092 >>> f = AtLeast(a, b, c, 2) 9094args = _get_args(args)
9096_z3_assert(len(args) > 1,
"Non empty list of arguments expected")
9097ctx = _ctx_from_ast_arg_list(args)
9099_z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression")
9100args1 = _coerce_expr_list(args[:-1], ctx)
9102_args, sz = _to_ast_array(args1)
9103 returnBoolRef(
Z3_mk_atleast(ctx.ref(), sz, _args, k), ctx)
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.
◆ AtMost() def z3py.AtMost ( * args )Create an at-most Pseudo-Boolean k constraint. >>> a, b, c = Bools('a b c') >>> f = AtMost(a, b, c, 2)
Definition at line 9070 of file z3py.py.
9071 """Create an at-most Pseudo-Boolean k constraint. 9073 >>> a, b, c = Bools('a b c') 9074 >>> f = AtMost(a, b, c, 2) 9076args = _get_args(args)
9078_z3_assert(len(args) > 1,
"Non empty list of arguments expected")
9079ctx = _ctx_from_ast_arg_list(args)
9081_z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression")
9082args1 = _coerce_expr_list(args[:-1], ctx)
9084_args, sz = _to_ast_array(args1)
9085 returnBoolRef(
Z3_mk_atmost(ctx.ref(), sz, _args, k), ctx)
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.
◆ BitVec() def z3py.BitVec ( name, bv, ctx =None
)
Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort. If `ctx=None`, then the global context is used. >>> x = BitVec('x', 16) >>> is_bv(x) True >>> x.size() 16 >>> x.sort() BitVec(16) >>> word = BitVecSort(16) >>> x2 = BitVec('x', word) >>> eq(x, x2) True
Definition at line 4083 of file z3py.py.
4083 def BitVec(name, bv, ctx=None):
4084 """Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort. 4085 If `ctx=None`, then the global context is used. 4087 >>> x = BitVec('x', 16) 4094 >>> word = BitVecSort(16) 4095 >>> x2 = BitVec('x', word) 4099 ifisinstance(bv, BitVecSortRef):
def BitVec(name, bv, ctx=None)
def BitVecSort(sz, ctx=None)
Referenced by BitVecs().
◆ BitVecs() def z3py.BitVecs ( names, bv, ctx =None
)
Return a tuple of bit-vector constants of size bv. >>> x, y, z = BitVecs('x y z', 16) >>> x.size() 16 >>> x.sort() BitVec(16) >>> Sum(x, y, z) 0 + x + y + z >>> Product(x, y, z) 1*x*y*z >>> simplify(Product(x, y, z)) x*y*z
Definition at line 4107 of file z3py.py.
4107 def BitVecs(names, bv, ctx=None):
4108 """Return a tuple of bit-vector constants of size bv. 4110 >>> x, y, z = BitVecs('x y z', 16) 4117 >>> Product(x, y, z) 4119 >>> simplify(Product(x, y, z)) 4123 ifisinstance(names, str):
4124names = names.split(
" ")
4125 return[
BitVec(name, bv, ctx)
forname
innames]
def BitVecs(names, bv, ctx=None)
◆ BitVecSort() def z3py.BitVecSort ( sz, ctx =None
)
Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used. >>> Byte = BitVecSort(8) >>> Word = BitVecSort(16) >>> Byte BitVec(8) >>> x = Const('x', Byte) >>> eq(x, BitVec('x', 8)) True
Definition at line 4051 of file z3py.py.
4052 """Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used. 4054 >>> Byte = BitVecSort(8) 4055 >>> Word = BitVecSort(16) 4058 >>> x = Const('x', Byte) 4059 >>> eq(x, BitVec('x', 8))Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz)
Create a bit-vector type of the given size.
Referenced by BitVec(), BitVecVal(), Context.mkBitVecSort(), and Context.MkBitVecSort().
◆ BitVecVal() def z3py.BitVecVal ( val, bv, ctx =None
)
Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used. >>> v = BitVecVal(10, 32) >>> v 10 >>> print("0x%.8x" % v.as_long()) 0x0000000a
Definition at line 4066 of file z3py.py.
4067 """Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used. 4069 >>> v = BitVecVal(10, 32) 4072 >>> print("0x%.8x" % v.as_long()) 4077 returnBitVecNumRef(
Z3_mk_numeral(ctx.ref(), _to_int_str(val), bv.ast), ctx)
Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty)
Create a numeral of a given sort.
def BitVecVal(val, bv, ctx=None)
◆ Bool() def z3py.Bool ( name, ctx =None
) ◆ Bools() def z3py.Bools ( names, ctx = None
)
Return a tuple of Boolean constants. `names` is a single string containing all names separated by blank spaces. If `ctx=None`, then the global context is used. >>> p, q, r = Bools('p q r') >>> And(p, Or(q, r)) And(p, Or(q, r))
Definition at line 1780 of file z3py.py.
1780 def Bools(names, ctx=None):
1781 """Return a tuple of Boolean constants. 1783 `names` is a single string containing all names separated by blank spaces. 1784 If `ctx=None`, then the global context is used. 1786 >>> p, q, r = Bools('p q r') 1787 >>> And(p, Or(q, r)) 1791 ifisinstance(names, str):
1792names = names.split(
" ")
1793 return[
Bool(name, ctx)
forname
innames]
def Bools(names, ctx=None)
◆ BoolSort() def z3py.BoolSort ( ctx =None
)
Return the Boolean Z3 sort. If `ctx=None`, then the global context is used. >>> BoolSort() Bool >>> p = Const('p', BoolSort()) >>> is_bool(p) True >>> r = Function('r', IntSort(), IntSort(), BoolSort()) >>> r(0, 1) r(0, 1) >>> is_bool(r(0, 1)) True
Definition at line 1731 of file z3py.py.
1732 """Return the Boolean Z3 sort. If `ctx=None`, then the global context is used. 1736 >>> p = Const('p', BoolSort()) 1739 >>> r = Function('r', IntSort(), IntSort(), BoolSort()) 1742 >>> is_bool(r(0, 1))Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c)
Create the Boolean type.
Referenced by Goal.assert_exprs(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Bool(), Solver.check(), FreshBool(), Context.getBoolSort(), If(), Implies(), Context.mkBoolSort(), Not(), SetSort(), QuantifierRef.sort(), and Xor().
◆ BoolVal() def z3py.BoolVal ( val, ctx =None
)
Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used. >>> BoolVal(True) True >>> is_true(BoolVal(True)) True >>> is_true(True) False >>> is_false(BoolVal(False)) True
Definition at line 1749 of file z3py.py.
1750 """Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used. 1754 >>> is_true(BoolVal(True)) 1758 >>> is_false(BoolVal(False))Z3_ast Z3_API Z3_mk_true(Z3_context c)
Create an AST node representing true.
Z3_ast Z3_API Z3_mk_false(Z3_context c)
Create an AST node representing false.
def BoolVal(val, ctx=None)
Referenced by Goal.as_expr(), ApplyResult.as_expr(), BoolSortRef.cast(), UserPropagateBase.conflict(), AlgebraicNumRef.index(), is_quantifier(), and Solver.to_smt2().
◆ BoolVector() def z3py.BoolVector ( prefix, sz, ctx =None
)
Return a list of Boolean constants of size `sz`. The constants are named using the given prefix. If `ctx=None`, then the global context is used. >>> P = BoolVector('p', 3) >>> P [p__0, p__1, p__2] >>> And(P) And(p__0, p__1, p__2)
Definition at line 1796 of file z3py.py.
1797 """Return a list of Boolean constants of size `sz`. 1799 The constants are named using the given prefix. 1800 If `ctx=None`, then the global context is used. 1802 >>> P = BoolVector('p', 3) 1806 And(p__0, p__1, p__2) 1808 return[
Bool(
"%s__%s"% (prefix, i))
fori
in range(sz)]
def BoolVector(prefix, sz, ctx=None)
◆ BV2Int() def z3py.BV2Int ( a, is_signed =False
)
Return the Z3 expression BV2Int(a). >>> b = BitVec('b', 3) >>> BV2Int(b).sort() Int >>> x = Int('x') >>> x > BV2Int(b) x > BV2Int(b) >>> x > BV2Int(b, is_signed=False) x > BV2Int(b) >>> x > BV2Int(b, is_signed=True) x > If(b < 0, BV2Int(b) - 8, BV2Int(b)) >>> solve(x > BV2Int(b), b == 1, x < 3) [x = 2, b = 1]
Definition at line 4019 of file z3py.py.
4019 def BV2Int(a, is_signed=False):
4020 """Return the Z3 expression BV2Int(a). 4022 >>> b = BitVec('b', 3) 4023 >>> BV2Int(b).sort() 4028 >>> x > BV2Int(b, is_signed=False) 4030 >>> x > BV2Int(b, is_signed=True) 4031 x > If(b < 0, BV2Int(b) - 8, BV2Int(b)) 4032 >>> solve(x > BV2Int(b), b == 1, x < 3) 4036_z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4039 returnArithRef(
Z3_mk_bv2int(ctx.ref(), a.as_ast(), is_signed), ctx)
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...
def BV2Int(a, is_signed=False)
◆ BVAddNoOverflow() def z3py.BVAddNoOverflow ( a, b, signed )A predicate the determines that bit-vector addition does not overflow
Definition at line 4505 of file z3py.py.
4506 """A predicate the determines that bit-vector addition does not overflow""" 4507_check_bv_args(a, b)
4508a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.
def BVAddNoOverflow(a, b, signed)
◆ BVAddNoUnderflow() def z3py.BVAddNoUnderflow ( a, b )A predicate the determines that signed bit-vector addition does not underflow
Definition at line 4512 of file z3py.py.
4513 """A predicate the determines that signed bit-vector addition does not underflow""" 4514_check_bv_args(a, b)
4515a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.
def BVAddNoUnderflow(a, b)
◆ BVMulNoOverflow() def z3py.BVMulNoOverflow ( a, b, signed )A predicate the determines that bit-vector multiplication does not overflow
Definition at line 4547 of file z3py.py.
4548 """A predicate the determines that bit-vector multiplication does not overflow""" 4549_check_bv_args(a, b)
4550a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.
def BVMulNoOverflow(a, b, signed)
◆ BVMulNoUnderflow() def z3py.BVMulNoUnderflow ( a, b )A predicate the determines that bit-vector signed multiplication does not underflow
Definition at line 4554 of file z3py.py.
4555 """A predicate the determines that bit-vector signed multiplication does not underflow""" 4556_check_bv_args(a, b)
4557a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...
def BVMulNoUnderflow(a, b)
◆ BVRedAnd()Return the reduction-and expression of `a`.
Definition at line 4491 of file z3py.py.
4492 """Return the reduction-and expression of `a`.""" 4494_z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4495 returnBitVecRef(
Z3_mk_bvredand(a.ctx_ref(), a.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.
◆ BVRedOr()Return the reduction-or expression of `a`.
Definition at line 4498 of file z3py.py.
4499 """Return the reduction-or expression of `a`.""" 4501_z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4502 returnBitVecRef(
Z3_mk_bvredor(a.ctx_ref(), a.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.
◆ BVSDivNoOverflow() def z3py.BVSDivNoOverflow ( a, b )A predicate the determines that bit-vector signed division does not overflow
Definition at line 4533 of file z3py.py.
4534 """A predicate the determines that bit-vector signed division does not overflow""" 4535_check_bv_args(a, b)
4536a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.
def BVSDivNoOverflow(a, b)
◆ BVSNegNoOverflow() def z3py.BVSNegNoOverflow ( a )A predicate the determines that bit-vector unary negation does not overflow
Definition at line 4540 of file z3py.py.
4541 """A predicate the determines that bit-vector unary negation does not overflow""" 4543_z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.
◆ BVSubNoOverflow() def z3py.BVSubNoOverflow ( a, b )A predicate the determines that bit-vector subtraction does not overflow
Definition at line 4519 of file z3py.py.
4520 """A predicate the determines that bit-vector subtraction does not overflow""" 4521_check_bv_args(a, b)
4522a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.
def BVSubNoOverflow(a, b)
◆ BVSubNoUnderflow() def z3py.BVSubNoUnderflow ( a, b, signed )A predicate the determines that bit-vector subtraction does not underflow
Definition at line 4526 of file z3py.py.
4527 """A predicate the determines that bit-vector subtraction does not underflow""" 4528_check_bv_args(a, b)
4529a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.
def BVSubNoUnderflow(a, b, signed)
◆ Cbrt() def z3py.Cbrt ( a, ctx =None
)
Return a Z3 expression which represents the cubic root of a. >>> x = Real('x') >>> Cbrt(x) x**(1/3)
Definition at line 3470 of file z3py.py.
3470 def Cbrt(a, ctx=None):
3471 """ Return a Z3 expression which represents the cubic root of a.def RealVal(val, ctx=None)
◆ CharFromBv() def z3py.CharFromBv ( bv )Definition at line 10989 of file z3py.py.
10991 raiseZ3Exception(
"Bit-vector expression needed")
Z3_ast Z3_API Z3_mk_char_from_bv(Z3_context c, Z3_ast bv)
Create a character from a bit-vector (code point).
◆ CharIsDigit() def z3py.CharIsDigit ( ch, ctx =None
)
Definition at line 11002 of file z3py.py.
11003ch = _coerce_char(ch, ctx)
11004 returnch.is_digit()
def CharIsDigit(ch, ctx=None)
◆ CharSort() def z3py.CharSort ( ctx =None
)
Create a character sort >>> ch = CharSort() >>> print(ch) Char
Definition at line 10888 of file z3py.py.
10889 """Create a character sort 10890 >>> ch = CharSort() 10894ctx = _get_ctx(ctx)
Z3_sort Z3_API Z3_mk_char_sort(Z3_context c)
Create a sort for unicode characters.
Referenced by Context.mkCharSort().
◆ CharToBv() def z3py.CharToBv ( ch, ctx =None
)
Definition at line 10994 of file z3py.py.
10995ch = _coerce_char(ch, ctx)
def CharToBv(ch, ctx=None)
◆ CharToInt() def z3py.CharToInt ( ch, ctx =None
)
Definition at line 10998 of file z3py.py.
10999ch = _coerce_char(ch, ctx)
def CharToInt(ch, ctx=None)
◆ CharVal() def z3py.CharVal ( ch, ctx =None
)
Definition at line 10981 of file z3py.py.
10982ctx = _get_ctx(ctx)
10983 ifisinstance(ch, str):
10985 if notisinstance(ch, int):
10986 raiseZ3Exception(
"character value should be an ordinal")
10987 return_to_expr_ref(
Z3_mk_char(ctx.ref(), ch), ctx)
Z3_ast Z3_API Z3_mk_char(Z3_context c, unsigned ch)
Create a character literal.
def CharVal(ch, ctx=None)
Referenced by SeqRef.__gt__().
◆ Complement() def z3py.Complement ( re )Create the complement regular expression.
Definition at line 11413 of file z3py.py.
11414 """Create the complement regular expression."""Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re)
Create the complement of the regular language re.
◆ Concat() def z3py.Concat ( * args )Create a Z3 bit-vector concatenation expression. >>> v = BitVecVal(1, 4) >>> Concat(v, v+1, v) Concat(Concat(1, 1 + 1), 1) >>> simplify(Concat(v, v+1, v)) 289 >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long()) 121
Definition at line 4128 of file z3py.py.
4129 """Create a Z3 bit-vector concatenation expression. 4131 >>> v = BitVecVal(1, 4) 4132 >>> Concat(v, v+1, v) 4133 Concat(Concat(1, 1 + 1), 1) 4134 >>> simplify(Concat(v, v+1, v)) 4136 >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long()) 4139args = _get_args(args)
4142_z3_assert(sz >= 2,
"At least two arguments expected.")
4149 if is_seq(args[0])
orisinstance(args[0], str):
4150args = [_coerce_seq(s, ctx)
fors
inargs]
4152_z3_assert(all([
is_seq(a)
fora
inargs]),
"All arguments must be sequence expressions.")
4154 fori
in range(sz):
4155v[i] = args[i].as_ast()
4160_z3_assert(all([
is_re(a)
fora
inargs]),
"All arguments must be regular expressions.")
4162 fori
in range(sz):
4163v[i] = args[i].as_ast()
4167_z3_assert(all([
is_bv(a)
fora
inargs]),
"All arguments must be Z3 bit-vector expressions.")
4169 fori
in range(sz - 1):
4170r = BitVecRef(
Z3_mk_concat(ctx.ref(), r.as_ast(), args[i + 1].as_ast()), ctx)
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
Referenced by SeqRef.__add__(), and SeqRef.__radd__().
◆ Cond() def z3py.Cond ( p, t1, t2, ctx =None
)
Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise. >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
Definition at line 8887 of file z3py.py.
8887 def Cond(p, t1, t2, ctx=None):
8888 """Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise. 8890 >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt')) 8892p = _to_probe(p, ctx)
8893t1 = _to_tactic(t1, ctx)
8894t2 = _to_tactic(t2, ctx)
8895 returnTactic(
Z3_tactic_cond(t1.ctx.ref(), p.probe, t1.tactic, t2.tactic), t1.ctx)
Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal if the probe p evaluates to true, and t2 if p evaluat...
def Cond(p, t1, t2, ctx=None)
Referenced by If().
◆ Const() def z3py.Const ( name, sort )Create a constant of the given sort. >>> Const('x', IntSort()) x
Definition at line 1455 of file z3py.py.
1455 def Const(name, sort):
1456 """Create a constant of the given sort. 1458 >>> Const('x', IntSort()) 1462_z3_assert(isinstance(sort, SortRef),
"Z3 sort expected")
Referenced by Consts().
◆ Consts() def z3py.Consts ( names, sort )Create several constants of the given sort. `names` is a string containing the names of all constants to be created. Blank spaces separate the names of different constants. >>> x, y, z = Consts('x y z', IntSort()) >>> x + y + z x + y + z
Definition at line 1467 of file z3py.py.
1467 def Consts(names, sort):
1468 """Create several constants of the given sort. 1470 `names` is a string containing the names of all constants to be created. 1471 Blank spaces separate the names of different constants. 1473 >>> x, y, z = Consts('x y z', IntSort()) 1477 ifisinstance(names, str):
1478names = names.split(
" ")
1479 return[
Const(name, sort)
forname
innames]
◆ Contains() def z3py.Contains ( a, b )Check if 'a' contains 'b' >>> s1 = Contains("abc", "ab") >>> simplify(s1) True >>> s2 = Contains("abc", "bc") >>> simplify(s2) True >>> x, y, z = Strings('x y z') >>> s3 = Contains(Concat(x,y,z), y) >>> simplify(s3) True
Definition at line 11158 of file z3py.py.
11159 """Check if 'a' contains 'b' 11160 >>> s1 = Contains("abc", "ab") 11163 >>> s2 = Contains("abc", "bc") 11166 >>> x, y, z = Strings('x y z') 11167 >>> s3 = Contains(Concat(x,y,z), y) 11171ctx = _get_ctx2(a, b)
11172a = _coerce_seq(a, ctx)
11173b = _coerce_seq(b, ctx)
Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee)
Check if container contains containee.
◆ CreateDatatypes() def z3py.CreateDatatypes ( * ds )Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects. In the following example we define a Tree-List using two mutually recursive datatypes. >>> TreeList = Datatype('TreeList') >>> Tree = Datatype('Tree') >>> # Tree has two constructors: leaf and node >>> Tree.declare('leaf', ('val', IntSort())) >>> # a node contains a list of trees >>> Tree.declare('node', ('children', TreeList)) >>> TreeList.declare('nil') >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList)) >>> Tree, TreeList = CreateDatatypes(Tree, TreeList) >>> Tree.val(Tree.leaf(10)) val(leaf(10)) >>> simplify(Tree.val(Tree.leaf(10))) 10 >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil))) >>> n1 node(cons(leaf(10), cons(leaf(20), nil))) >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil)) >>> simplify(n2 == n1) False >>> simplify(TreeList.car(Tree.children(n2)) == n1) True
Definition at line 5204 of file z3py.py.
5205 """Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects. 5207 In the following example we define a Tree-List using two mutually recursive datatypes. 5209 >>> TreeList = Datatype('TreeList') 5210 >>> Tree = Datatype('Tree') 5211 >>> # Tree has two constructors: leaf and node 5212 >>> Tree.declare('leaf', ('val', IntSort())) 5213 >>> # a node contains a list of trees 5214 >>> Tree.declare('node', ('children', TreeList)) 5215 >>> TreeList.declare('nil') 5216 >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList)) 5217 >>> Tree, TreeList = CreateDatatypes(Tree, TreeList) 5218 >>> Tree.val(Tree.leaf(10)) 5220 >>> simplify(Tree.val(Tree.leaf(10))) 5222 >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil))) 5224 node(cons(leaf(10), cons(leaf(20), nil))) 5225 >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil)) 5226 >>> simplify(n2 == n1) 5228 >>> simplify(TreeList.car(Tree.children(n2)) == n1) 5233_z3_assert(len(ds) > 0,
"At least one Datatype must be specified")
5234_z3_assert(all([isinstance(d, Datatype)
ford
inds]),
"Arguments must be Datatypes")
5235_z3_assert(all([d.ctx == ds[0].ctx
ford
inds]),
"Context mismatch")
5236_z3_assert(all([d.constructors != []
ford
inds]),
"Non-empty Datatypes expected")
5239names = (Symbol * num)()
5240out = (Sort * num)()
5241clists = (ConstructorList * num)()
5243 fori
in range(num):
5246num_cs = len(d.constructors)
5247cs = (Constructor * num_cs)()
5248 forj
in range(num_cs):
5249c = d.constructors[j]
5254fnames = (Symbol * num_fs)()
5255sorts = (Sort * num_fs)()
5256refs = (ctypes.c_uint * num_fs)()
5257 fork
in range(num_fs):
5261 ifisinstance(ftype, Datatype):
5264ds.count(ftype) == 1,
5265 "One and only one occurrence of each datatype is expected",
5268refs[k] = ds.index(ftype)
5271_z3_assert(
is_sort(ftype),
"Z3 sort expected")
5272sorts[k] = ftype.ast
5274cs[j] =
Z3_mk_constructor(ctx.ref(), cname, rname, num_fs, fnames, sorts, refs)
5275to_delete.append(ScopedConstructor(cs[j], ctx))
5277to_delete.append(ScopedConstructorList(clists[i], ctx))
5281 fori
in range(num):
5282dref = DatatypeSortRef(out[i], ctx)
5283num_cs = dref.num_constructors()
5284 forj
in range(num_cs):
5285cref = dref.constructor(j)
5286cref_name = cref.name()
5287cref_arity = cref.arity()
5288 ifcref.arity() == 0:
5290setattr(dref, cref_name, cref)
5291rref = dref.recognizer(j)
5292setattr(dref,
"is_"+ cref_name, rref)
5293 fork
in range(cref_arity):
5294aref = dref.accessor(j, k)
5295setattr(dref, aref.name(), aref)
5297 returntuple(result)
Z3_constructor Z3_API Z3_mk_constructor(Z3_context c, Z3_symbol name, Z3_symbol recognizer, unsigned num_fields, Z3_symbol const field_names[], Z3_sort_opt const sorts[], unsigned sort_refs[])
Create a constructor.
void Z3_API Z3_mk_datatypes(Z3_context c, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort sorts[], Z3_constructor_list constructor_lists[])
Create mutually recursive datatypes.
Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c, unsigned num_constructors, Z3_constructor const constructors[])
Create list of constructors.
Referenced by Datatype.create().
◆ DatatypeSort() def z3py.DatatypeSort ( name, ctx =None
)
Create a reference to a sort that was declared, or will be declared, as a recursive datatype
Definition at line 5404 of file z3py.py.
5405 """Create a reference to a sort that was declared, or will be declared, as a recursive datatype"""Z3_sort Z3_API Z3_mk_datatype_sort(Z3_context c, Z3_symbol name)
create a forward reference to a recursive datatype being declared. The forward reference can be used ...
def DatatypeSort(name, ctx=None)
Referenced by Context.MkDatatypeSort(), and Context.MkDatatypeSorts().
◆ DeclareSort() def z3py.DeclareSort ( name, ctx =None
)
Create a new uninterpreted sort named `name`. If `ctx=None`, then the new sort is declared in the global Z3Py context. >>> A = DeclareSort('A') >>> a = Const('a', A) >>> b = Const('b', A) >>> a.sort() == A True >>> b.sort() == A True >>> a == b a == b
Definition at line 695 of file z3py.py.
696 """Create a new uninterpreted sort named `name`. 698 If `ctx=None`, then the new sort is declared in the global Z3Py context. 700 >>> A = DeclareSort('A') 701 >>> a = Const('a', A) 702 >>> b = Const('b', A)Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s)
Create a free (uninterpreted) type using the given name (symbol).
def DeclareSort(name, ctx=None)
◆ DeclareTypeVar() def z3py.DeclareTypeVar ( name, ctx =None
)
Create a new type variable named `name`. If `ctx=None`, then the new sort is declared in the global Z3Py context.
Definition at line 723 of file z3py.py.
724 """Create a new type variable named `name`. 726 If `ctx=None`, then the new sort is declared in the global Z3Py context.Z3_sort Z3_API Z3_mk_type_variable(Z3_context c, Z3_symbol s)
Create a type variable.
def DeclareTypeVar(name, ctx=None)
◆ Default()Return a default value for array expression. >>> b = K(IntSort(), 1) >>> prove(Default(b) == 1) proved
Definition at line 4825 of file z3py.py.
4826 """ Return a default value for array expression. 4827 >>> b = K(IntSort(), 1) 4828 >>> prove(Default(b) == 1) 4832_z3_assert(
is_array_sort(a),
"First argument must be a Z3 array expression")
◆ describe_probes() def z3py.describe_probes ( )Display a (tabular) description of all available probes in Z3.
Definition at line 8808 of file z3py.py.
8809 """Display a (tabular) description of all available probes in Z3.""" 8812print(
'<table border="1" cellpadding="2" cellspacing="0">')
8815print(
'<tr style="background-color:#CFCFCF">')
8820print(
"<td>%s</td><td>%s</td></tr>"% (p, insert_line_breaks(
probe_description(p), 40)))
def probe_description(name, ctx=None)
◆ describe_tactics() def z3py.describe_tactics ( )Display a (tabular) description of all available tactics in Z3.
Definition at line 8602 of file z3py.py.
8603 """Display a (tabular) description of all available tactics in Z3.""" 8606print(
'<table border="1" cellpadding="2" cellspacing="0">')
8609print(
'<tr style="background-color:#CFCFCF">')
8614print(
"<td>%s</td><td>%s</td></tr>"% (t, insert_line_breaks(
tactic_description(t), 40)))
def tactic_description(name, ctx=None)
◆ deserialize() def z3py.deserialize ( st )inverse function to the serialize method on ExprRef. It is made available to make it easier for users to serialize expressions back and forth between strings. Solvers can be serialized using the 'sexpr()' method.
Definition at line 1137 of file z3py.py.
1138 """inverse function to the serialize method on ExprRef. 1139 It is made available to make it easier for users to serialize expressions back and forth between 1140 strings. Solvers can be serialized using the 'sexpr()' method. 1144 iflen(s.assertions()) != 1:
1145 raiseZ3Exception(
"single assertion expected")
1146fml = s.assertions()[0]
1147 iffml.num_args() != 1:
1148 raiseZ3Exception(
"dummy function 'F' expected")
◆ Diff() def z3py.Diff ( a, b, ctx =None
)
Create the difference regular expression
Definition at line 11463 of file z3py.py.
11463 def Diff(a, b, ctx=None):
11464 """Create the difference regular expression 11467_z3_assert(
is_expr(a),
"expression expected")
11468_z3_assert(
is_expr(b),
"expression expected")
11469 returnReRef(
Z3_mk_re_diff(a.ctx_ref(), a.ast, b.ast), a.ctx)
Z3_ast Z3_API Z3_mk_re_diff(Z3_context c, Z3_ast re1, Z3_ast re2)
Create the difference of regular expressions.
◆ disable_trace() def z3py.disable_trace ( msg )Definition at line 79 of file z3py.py.
void Z3_API Z3_disable_trace(Z3_string tag)
Disable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
◆ DisjointSum() def z3py.DisjointSum ( name, sorts, ctx =None
)
Create a named tagged union sort base on a set of underlying sorts Example: >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
Definition at line 5421 of file z3py.py.
5422 """Create a named tagged union sort base on a set of underlying sorts 5424 >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()]) 5426sum = Datatype(name, ctx)
5427 fori
in range(len(sorts)):
5428sum.declare(
"inject%d"% i, (
"project%d"% i, sorts[i]))
5430 returnsum, [(sum.constructor(i), sum.accessor(i, 0))
fori
in range(len(sorts))]
def DisjointSum(name, sorts, ctx=None)
◆ Distinct() def z3py.Distinct ( * args )Create a Z3 distinct expression. >>> x = Int('x') >>> y = Int('y') >>> Distinct(x, y) x != y >>> z = Int('z') >>> Distinct(x, y, z) Distinct(x, y, z) >>> simplify(Distinct(x, y, z)) Distinct(x, y, z) >>> simplify(Distinct(x, y, z), blast_distinct=True) And(Not(x == y), Not(x == z), Not(y == z))
Definition at line 1422 of file z3py.py.
1423 """Create a Z3 distinct expression. 1430 >>> Distinct(x, y, z) 1432 >>> simplify(Distinct(x, y, z)) 1434 >>> simplify(Distinct(x, y, z), blast_distinct=True) 1435 And(Not(x == y), Not(x == z), Not(y == z)) 1437args = _get_args(args)
1438ctx = _ctx_from_ast_arg_list(args)
1440_z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression")
1441args = _coerce_expr_list(args, ctx)
1442_args, sz = _to_ast_array(args)
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).
◆ Empty()Create the empty sequence of the given sort >>> e = Empty(StringSort()) >>> e2 = StringVal("") >>> print(e.eq(e2)) True >>> e3 = Empty(SeqSort(IntSort())) >>> print(e3) Empty(Seq(Int)) >>> e4 = Empty(ReSort(SeqSort(IntSort()))) >>> print(e4) Empty(ReSort(Seq(Int)))
Definition at line 11088 of file z3py.py.
11089 """Create the empty sequence of the given sort 11090 >>> e = Empty(StringSort()) 11091 >>> e2 = StringVal("") 11092 >>> print(e.eq(e2)) 11094 >>> e3 = Empty(SeqSort(IntSort())) 11097 >>> e4 = Empty(ReSort(SeqSort(IntSort()))) 11099 Empty(ReSort(Seq(Int))) 11101 ifisinstance(s, SeqSortRef):
11103 ifisinstance(s, ReSortRef):
11105 raiseZ3Exception(
"Non-sequence, non-regular expression sort passed to Empty")
Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq)
Create an empty sequence of the sequence sort seq.
Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re)
Create an empty regular expression of sort re.
◆ EmptySet()Create the empty set >>> EmptySet(IntSort()) K(Int, False)
Definition at line 4968 of file z3py.py.
4969 """Create the empty set 4970 >>> EmptySet(IntSort())Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)
Create the empty set.
◆ enable_trace() def z3py.enable_trace ( msg )Definition at line 75 of file z3py.py.
void Z3_API Z3_enable_trace(Z3_string tag)
Enable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
◆ ensure_prop_closures() def z3py.ensure_prop_closures ( )Definition at line 11582 of file z3py.py.
11583 global_prop_closures
11584 if_prop_closures
is None:
11585_prop_closures = PropClosures()
def ensure_prop_closures()
Referenced by UserPropagateBase.__init__().
◆ EnumSort() def z3py.EnumSort ( name, values, ctx =None
)
Return a new enumeration sort named `name` containing the given values. The result is a pair (sort, list of constants). Example: >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
Definition at line 5433 of file z3py.py.
5433 def EnumSort(name, values, ctx=None):
5434 """Return a new enumeration sort named `name` containing the given values. 5436 The result is a pair (sort, list of constants). 5438 >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue']) 5441_z3_assert(isinstance(name, str),
"Name must be a string")
5442_z3_assert(all([isinstance(v, str)
forv
invalues]),
"Enumeration sort values must be strings")
5443_z3_assert(len(values) > 0,
"At least one value expected")
5446_val_names = (Symbol * num)()
5447 fori
in range(num):
5448_val_names[i] =
to_symbol(values[i], ctx)
5449_values = (FuncDecl * num)()
5450_testers = (FuncDecl * num)()
5454 fori
in range(num):
5455V.append(FuncDeclRef(_values[i], ctx))
5456V = [a()
fora
inV]
Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c, Z3_symbol name, unsigned n, Z3_symbol const enum_names[], Z3_func_decl enum_consts[], Z3_func_decl enum_testers[])
Create a enumeration sort.
def EnumSort(name, values, ctx=None)
Referenced by Context.MkEnumSort().
◆ eq()Return `True` if `a` and `b` are structurally identical AST nodes. >>> x = Int('x') >>> y = Int('y') >>> eq(x, y) False >>> eq(x + 1, x + 1) True >>> eq(x + 1, 1 + x) False >>> eq(simplify(x + 1), simplify(1 + x)) True
Definition at line 472 of file z3py.py.
473 """Return `True` if `a` and `b` are structurally identical AST nodes. 483 >>> eq(simplify(x + 1), simplify(1 + x)) 487_z3_assert(
is_ast(a)
and is_ast(b),
"Z3 ASTs expected")
Referenced by substitute().
◆ Exists() def z3py.Exists ( vs, body, weight =1
, qid = ""
, skid = ""
, patterns = []
, no_patterns = []
)
Create a Z3 exists formula. The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> x = Int('x') >>> y = Int('y') >>> q = Exists([x, y], f(x, y) >= x, skid="foo") >>> q Exists([x, y], f(x, y) >= x) >>> is_quantifier(q) True >>> r = Tactic('nnf')(q).as_expr() >>> is_quantifier(r) False
Definition at line 2290 of file z3py.py.
2290 def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2291 """Create a Z3 exists formula. 2293 The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations. 2296 >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2299 >>> q = Exists([x, y], f(x, y) >= x, skid="foo") 2301 Exists([x, y], f(x, y) >= x) 2302 >>> is_quantifier(q) 2304 >>> r = Tactic('nnf')(q).as_expr() 2305 >>> is_quantifier(r) 2308 return_mk_quantifier(
False, vs, body, weight, qid, skid, patterns, no_patterns)
def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
Referenced by Fixedpoint.abstract().
◆ Ext()Return extensionality index for one-dimensional arrays. >> a, b = Consts('a b', SetSort(IntSort())) >> Ext(a, b) Ext(a, b)
Definition at line 4914 of file z3py.py.
4915 """Return extensionality index for one-dimensional arrays. 4916 >> a, b = Consts('a b', SetSort(IntSort())) 4923 return_to_expr_ref(
Z3_mk_array_ext(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create array extensionality index given two arrays with the same sort. The meaning is given by the ax...
◆ Extract() def z3py.Extract ( high, low, a )Create a Z3 bit-vector extraction expression. Extract is overloaded to also work on sequence extraction. The functions SubString and SubSeq are redirected to Extract. For this case, the arguments are reinterpreted as: high - is a sequence (string) low - is an offset a - is the length to be extracted >>> x = BitVec('x', 8) >>> Extract(6, 2, x) Extract(6, 2, x) >>> Extract(6, 2, x).sort() BitVec(5) >>> simplify(Extract(StringVal("abcd"),2,1)) "c"
Definition at line 4174 of file z3py.py.
4175 """Create a Z3 bit-vector extraction expression. 4176 Extract is overloaded to also work on sequence extraction. 4177 The functions SubString and SubSeq are redirected to Extract. 4178 For this case, the arguments are reinterpreted as: 4179 high - is a sequence (string) 4181 a - is the length to be extracted 4183 >>> x = BitVec('x', 8) 4184 >>> Extract(6, 2, x) 4186 >>> Extract(6, 2, x).sort() 4188 >>> simplify(Extract(StringVal("abcd"),2,1)) 4191 ifisinstance(high, str):
4195offset, length = _coerce_exprs(low, a, s.ctx)
4196 returnSeqRef(
Z3_mk_seq_extract(s.ctx_ref(), s.as_ast(), offset.as_ast(), length.as_ast()), s.ctx)
4198_z3_assert(low <= high,
"First argument must be greater than or equal to second argument")
4199_z3_assert(_is_int(high)
andhigh >= 0
and_is_int(low)
andlow >= 0,
4200 "First and second arguments must be non negative integers")
4201_z3_assert(
is_bv(a),
"Third argument must be a Z3 bit-vector expression")
4202 returnBitVecRef(
Z3_mk_extract(a.ctx_ref(), high, low, a.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.
def Extract(high, low, a)
def StringVal(s, ctx=None)
Referenced by SubSeq(), and SubString().
◆ FailIf() def z3py.FailIf ( p, ctx =None
)
Return a tactic that fails if the probe `p` evaluates to true. Otherwise, it returns the input goal unmodified. In the following example, the tactic applies 'simplify' if and only if there are more than 2 constraints in the goal. >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify')) >>> x, y = Ints('x y') >>> g = Goal() >>> g.add(x > 0) >>> g.add(y > 0) >>> t(g) [[x > 0, y > 0]] >>> g.add(x == y + 1) >>> t(g) [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
Definition at line 8845 of file z3py.py.
8845 def FailIf(p, ctx=None):
8846 """Return a tactic that fails if the probe `p` evaluates to true. 8847 Otherwise, it returns the input goal unmodified. 8849 In the following example, the tactic applies 'simplify' if and only if there are 8850 more than 2 constraints in the goal. 8852 >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify')) 8853 >>> x, y = Ints('x y') 8859 >>> g.add(x == y + 1) 8861 [[Not(x <= 0), Not(y <= 0), x == 1 + y]] 8863p = _to_probe(p, ctx)
Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p)
Return a tactic that fails if the probe p evaluates to false.
◆ FiniteDomainSort() def z3py.FiniteDomainSort ( name, sz, ctx =None
)
Create a named finite domain sort of a given size sz
Definition at line 7783 of file z3py.py.
7784 """Create a named finite domain sort of a given size sz""" 7785 if notisinstance(name, Symbol):
Z3_sort Z3_API Z3_mk_finite_domain_sort(Z3_context c, Z3_symbol name, uint64_t size)
Create a named finite domain sort.
def FiniteDomainSort(name, sz, ctx=None)
Referenced by Context.MkFiniteDomainSort().
◆ FiniteDomainVal() def z3py.FiniteDomainVal ( val, sort, ctx =None
)
Return a Z3 finite-domain value. If `ctx=None`, then the global context is used. >>> s = FiniteDomainSort('S', 256) >>> FiniteDomainVal(255, s) 255 >>> FiniteDomainVal('100', s) 100
Definition at line 7853 of file z3py.py.
7854 """Return a Z3 finite-domain value. If `ctx=None`, then the global context is used. 7856 >>> s = FiniteDomainSort('S', 256) 7857 >>> FiniteDomainVal(255, s) 7859 >>> FiniteDomainVal('100', s) 7865 returnFiniteDomainNumRef(
Z3_mk_numeral(ctx.ref(), _to_int_str(val), sort.ast), ctx)
def FiniteDomainVal(val, sort, ctx=None)
def is_finite_domain_sort(s)
◆ Float128() def z3py.Float128 ( ctx =None
)
Floating-point 128-bit (quadruple) sort.
Definition at line 9573 of file z3py.py.
9574 """Floating-point 128-bit (quadruple) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_128(Z3_context c)
Create the quadruple-precision (128-bit) FloatingPoint sort.
◆ Float16() def z3py.Float16 ( ctx =None
)
Floating-point 16-bit (half) sort.
Definition at line 9537 of file z3py.py.
9538 """Floating-point 16-bit (half) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_16(Z3_context c)
Create the half-precision (16-bit) FloatingPoint sort.
◆ Float32() def z3py.Float32 ( ctx =None
)
Floating-point 32-bit (single) sort.
Definition at line 9549 of file z3py.py.
9550 """Floating-point 32-bit (single) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_32(Z3_context c)
Create the single-precision (32-bit) FloatingPoint sort.
◆ Float64() def z3py.Float64 ( ctx =None
)
Floating-point 64-bit (double) sort.
Definition at line 9561 of file z3py.py.
9562 """Floating-point 64-bit (double) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_64(Z3_context c)
Create the double-precision (64-bit) FloatingPoint sort.
◆ FloatDouble() def z3py.FloatDouble ( ctx =None
)
Floating-point 64-bit (double) sort.
Definition at line 9567 of file z3py.py.
9568 """Floating-point 64-bit (double) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_double(Z3_context c)
Create the double-precision (64-bit) FloatingPoint sort.
def FloatDouble(ctx=None)
◆ FloatHalf() def z3py.FloatHalf ( ctx =None
)
Floating-point 16-bit (half) sort.
Definition at line 9543 of file z3py.py.
9544 """Floating-point 16-bit (half) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_half(Z3_context c)
Create the half-precision (16-bit) FloatingPoint sort.
◆ FloatQuadruple() def z3py.FloatQuadruple ( ctx =None
)
Floating-point 128-bit (quadruple) sort.
Definition at line 9579 of file z3py.py.
9580 """Floating-point 128-bit (quadruple) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_quadruple(Z3_context c)
Create the quadruple-precision (128-bit) FloatingPoint sort.
def FloatQuadruple(ctx=None)
◆ FloatSingle() def z3py.FloatSingle ( ctx =None
)
Floating-point 32-bit (single) sort.
Definition at line 9555 of file z3py.py.
9556 """Floating-point 32-bit (single) sort."""Z3_sort Z3_API Z3_mk_fpa_sort_single(Z3_context c)
Create the single-precision (32-bit) FloatingPoint sort.
def FloatSingle(ctx=None)
◆ ForAll() def z3py.ForAll ( vs, body, weight =1
, qid = ""
, skid = ""
, patterns = []
, no_patterns = []
)
Create a Z3 forall formula. The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> x = Int('x') >>> y = Int('y') >>> ForAll([x, y], f(x, y) >= x) ForAll([x, y], f(x, y) >= x) >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ]) ForAll([x, y], f(x, y) >= x) >>> ForAll([x, y], f(x, y) >= x, weight=10) ForAll([x, y], f(x, y) >= x)
Definition at line 2272 of file z3py.py.
2272 def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2273 """Create a Z3 forall formula. 2275 The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations. 2277 >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2280 >>> ForAll([x, y], f(x, y) >= x) 2281 ForAll([x, y], f(x, y) >= x) 2282 >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ]) 2283 ForAll([x, y], f(x, y) >= x) 2284 >>> ForAll([x, y], f(x, y) >= x, weight=10) 2285 ForAll([x, y], f(x, y) >= x) 2287 return_mk_quantifier(
True, vs, body, weight, qid, skid, patterns, no_patterns)
def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
Referenced by Fixedpoint.abstract().
◆ FP() def z3py.FP ( name, fpsort, ctx =None
)
Return a floating-point constant named `name`. `fpsort` is the floating-point sort. If `ctx=None`, then the global context is used. >>> x = FP('x', FPSort(8, 24)) >>> is_fp(x) True >>> x.ebits() 8 >>> x.sort() FPSort(8, 24) >>> word = FPSort(8, 24) >>> x2 = FP('x', word) >>> eq(x, x2) True
Definition at line 10205 of file z3py.py.
10205 def FP(name, fpsort, ctx=None):
10206 """Return a floating-point constant named `name`. 10207 `fpsort` is the floating-point sort. 10208 If `ctx=None`, then the global context is used. 10210 >>> x = FP('x', FPSort(8, 24)) 10217 >>> word = FPSort(8, 24) 10218 >>> x2 = FP('x', word) 10222 ifisinstance(fpsort, FPSortRef)
andctx
is None:
10225ctx = _get_ctx(ctx)
def FP(name, fpsort, ctx=None)
Referenced by FPs().
◆ fpAbs() def z3py.fpAbs ( a, ctx =None
)
Create a Z3 floating-point absolute value expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FPVal(1.0, s) >>> fpAbs(x) fpAbs(1) >>> y = FPVal(-20.0, s) >>> y -1.25*(2**4) >>> fpAbs(y) fpAbs(-1.25*(2**4)) >>> fpAbs(-1.25*(2**4)) fpAbs(-1.25*(2**4)) >>> fpAbs(x).sort() FPSort(8, 24)
Definition at line 10248 of file z3py.py.
10248 def fpAbs(a, ctx=None):
10249 """Create a Z3 floating-point absolute value expression. 10251 >>> s = FPSort(8, 24) 10253 >>> x = FPVal(1.0, s) 10256 >>> y = FPVal(-20.0, s) 10260 fpAbs(-1.25*(2**4)) 10261 >>> fpAbs(-1.25*(2**4)) 10262 fpAbs(-1.25*(2**4)) 10263 >>> fpAbs(x).sort() 10266ctx = _get_ctx(ctx)
10267[a] = _coerce_fp_expr_list([a], ctx)
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.
◆ fpAdd() def z3py.fpAdd ( rm, a, b, ctx =None
)
Create a Z3 floating-point addition expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpAdd(rm, x, y) x + y >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ fpAdd(RTZ(), x, y) >>> fpAdd(rm, x, y).sort() FPSort(8, 24)
Definition at line 10339 of file z3py.py.
10339 def fpAdd(rm, a, b, ctx=None):
10340 """Create a Z3 floating-point addition expression. 10342 >>> s = FPSort(8, 24) 10346 >>> fpAdd(rm, x, y) 10348 >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ 10350 >>> fpAdd(rm, x, y).sort() 10353 return_mk_fp_bin(Z3_mk_fpa_add, rm, a, b, ctx)
def fpAdd(rm, a, b, ctx=None)
Referenced by FPRef.__add__(), and FPRef.__radd__().
◆ fpBVToFP() def z3py.fpBVToFP ( v, sort, ctx =None
)
Create a Z3 floating-point conversion expression that represents the conversion from a bit-vector term to a floating-point term. >>> x_bv = BitVecVal(0x3F800000, 32) >>> x_fp = fpBVToFP(x_bv, Float32()) >>> x_fp fpToFP(1065353216) >>> simplify(x_fp) 1
Definition at line 10661 of file z3py.py.
10662 """Create a Z3 floating-point conversion expression that represents the 10663 conversion from a bit-vector term to a floating-point term. 10665 >>> x_bv = BitVecVal(0x3F800000, 32) 10666 >>> x_fp = fpBVToFP(x_bv, Float32()) 10672_z3_assert(
is_bv(v),
"First argument must be a Z3 bit-vector expression")
10673_z3_assert(
is_fp_sort(sort),
"Second argument must be a Z3 floating-point sort.")
10674ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s)
Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.
def fpBVToFP(v, sort, ctx=None)
◆ fpDiv() def z3py.fpDiv ( rm, a, b, ctx =None
)
Create a Z3 floating-point division expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpDiv(rm, x, y) x / y >>> fpDiv(rm, x, y).sort() FPSort(8, 24)
Definition at line 10386 of file z3py.py.
10386 def fpDiv(rm, a, b, ctx=None):
10387 """Create a Z3 floating-point division expression. 10389 >>> s = FPSort(8, 24) 10393 >>> fpDiv(rm, x, y) 10395 >>> fpDiv(rm, x, y).sort() 10398 return_mk_fp_bin(Z3_mk_fpa_div, rm, a, b, ctx)
def fpDiv(rm, a, b, ctx=None)
Referenced by FPRef.__div__(), and FPRef.__rdiv__().
◆ fpEQ() def z3py.fpEQ ( a, b, ctx =None
)
Create the Z3 floating-point expression `fpEQ(other, self)`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpEQ(x, y) fpEQ(x, y) >>> fpEQ(x, y).sexpr() '(fp.eq x y)'
Definition at line 10569 of file z3py.py.
10569 def fpEQ(a, b, ctx=None):
10570 """Create the Z3 floating-point expression `fpEQ(other, self)`. 10572 >>> x, y = FPs('x y', FPSort(8, 24)) 10575 >>> fpEQ(x, y).sexpr() 10578 return_mk_fp_bin_pred(Z3_mk_fpa_eq, a, b, ctx)
Referenced by fpNEQ().
◆ fpFMA() def z3py.fpFMA ( rm, a, b, c, ctx =None
)
Create a Z3 floating-point fused multiply-add expression.
Definition at line 10445 of file z3py.py.
10445 def fpFMA(rm, a, b, c, ctx=None):
10446 """Create a Z3 floating-point fused multiply-add expression. 10448 return_mk_fp_tern(Z3_mk_fpa_fma, rm, a, b, c, ctx)
def fpFMA(rm, a, b, c, ctx=None)
◆ fpFP() def z3py.fpFP ( sgn, exp, sig, ctx =None
)
Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp. >>> s = FPSort(8, 24) >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23)) >>> print(x) fpFP(1, 127, 4194304) >>> xv = FPVal(-1.5, s) >>> print(xv) -1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() sat >>> xv = FPVal(+1.5, s) >>> print(xv) 1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() unsat
Definition at line 10593 of file z3py.py.
10593 def fpFP(sgn, exp, sig, ctx=None):
10594 """Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp. 10596 >>> s = FPSort(8, 24) 10597 >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23)) 10599 fpFP(1, 127, 4194304) 10600 >>> xv = FPVal(-1.5, s) 10603 >>> slvr = Solver() 10604 >>> slvr.add(fpEQ(x, xv)) 10607 >>> xv = FPVal(+1.5, s) 10610 >>> slvr = Solver() 10611 >>> slvr.add(fpEQ(x, xv)) 10615_z3_assert(
is_bv(sgn)
and is_bv(exp)
and is_bv(sig),
"sort mismatch")
10616_z3_assert(sgn.sort().size() == 1,
"sort mismatch")
10617ctx = _get_ctx(ctx)
10618_z3_assert(ctx == sgn.ctx == exp.ctx == sig.ctx,
"context mismatch")
10619 returnFPRef(
Z3_mk_fpa_fp(ctx.ref(), sgn.ast, exp.ast, sig.ast), ctx)
Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
Create an expression of FloatingPoint sort from three bit-vector expressions.
def fpFP(sgn, exp, sig, ctx=None)
◆ fpFPToFP() def z3py.fpFPToFP ( rm, v, sort, ctx =None
)
Create a Z3 floating-point conversion expression that represents the conversion from a floating-point term to a floating-point term of different precision. >>> x_sgl = FPVal(1.0, Float32()) >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64()) >>> x_dbl fpToFP(RNE(), 1) >>> simplify(x_dbl) 1 >>> x_dbl.sort() FPSort(11, 53)
Definition at line 10678 of file z3py.py.
10678 def fpFPToFP(rm, v, sort, ctx=None):
10679 """Create a Z3 floating-point conversion expression that represents the 10680 conversion from a floating-point term to a floating-point term of different precision. 10682 >>> x_sgl = FPVal(1.0, Float32()) 10683 >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64()) 10686 >>> simplify(x_dbl) 10691_z3_assert(
is_fprm(rm),
"First argument must be a Z3 floating-point rounding mode expression.")
10692_z3_assert(
is_fp(v),
"Second argument must be a Z3 floating-point expression.")
10693_z3_assert(
is_fp_sort(sort),
"Third argument must be a Z3 floating-point sort.")
10694ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a FloatingPoint term into another term of different FloatingPoint sort.
def fpFPToFP(rm, v, sort, ctx=None)
◆ fpGEQ() def z3py.fpGEQ ( a, b, ctx =None
)
Create the Z3 floating-point expression `other >= self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpGEQ(x, y) x >= y >>> (x >= y).sexpr() '(fp.geq x y)'
Definition at line 10557 of file z3py.py.
10557 def fpGEQ(a, b, ctx=None):
10558 """Create the Z3 floating-point expression `other >= self`. 10560 >>> x, y = FPs('x y', FPSort(8, 24)) 10563 >>> (x >= y).sexpr() 10566 return_mk_fp_bin_pred(Z3_mk_fpa_geq, a, b, ctx)
def fpGEQ(a, b, ctx=None)
Referenced by FPRef.__ge__().
◆ fpGT() def z3py.fpGT ( a, b, ctx =None
)
Create the Z3 floating-point expression `other > self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpGT(x, y) x > y >>> (x > y).sexpr() '(fp.gt x y)'
Definition at line 10545 of file z3py.py.
10545 def fpGT(a, b, ctx=None):
10546 """Create the Z3 floating-point expression `other > self`. 10548 >>> x, y = FPs('x y', FPSort(8, 24)) 10551 >>> (x > y).sexpr() 10554 return_mk_fp_bin_pred(Z3_mk_fpa_gt, a, b, ctx)
Referenced by FPRef.__gt__().
◆ fpInfinity() def z3py.fpInfinity ( s, negative )Create a Z3 floating-point +oo or -oo term.
Definition at line 10133 of file z3py.py.
10134 """Create a Z3 floating-point +oo or -oo term.""" 10135_z3_assert(isinstance(s, FPSortRef),
"sort mismatch")
10136_z3_assert(isinstance(negative, bool),
"expected Boolean flag")
10137 returnFPNumRef(
Z3_mk_fpa_inf(s.ctx_ref(), s.ast, negative), s.ctx)
Z3_ast Z3_API Z3_mk_fpa_inf(Z3_context c, Z3_sort s, bool negative)
Create a floating-point infinity of sort s.
def fpInfinity(s, negative)
◆ fpIsInf() def z3py.fpIsInf ( a, ctx =None
)
Create a Z3 floating-point isInfinite expression. >>> s = FPSort(8, 24) >>> x = FP('x', s) >>> fpIsInf(x) fpIsInf(x)
Definition at line 10475 of file z3py.py.
10476 """Create a Z3 floating-point isInfinite expression. 10478 >>> s = FPSort(8, 24) 10483 return_mk_fp_unary_pred(Z3_mk_fpa_is_infinite, a, ctx)
◆ fpIsNaN() def z3py.fpIsNaN ( a, ctx =None
)
Create a Z3 floating-point isNaN expression. >>> s = FPSort(8, 24) >>> x = FP('x', s) >>> y = FP('y', s) >>> fpIsNaN(x) fpIsNaN(x)
Definition at line 10463 of file z3py.py.
10464 """Create a Z3 floating-point isNaN expression. 10466 >>> s = FPSort(8, 24) 10472 return_mk_fp_unary_pred(Z3_mk_fpa_is_nan, a, ctx)
◆ fpIsNegative() def z3py.fpIsNegative ( a, ctx =None
)
Create a Z3 floating-point isNegative expression.
Definition at line 10504 of file z3py.py.
10505 """Create a Z3 floating-point isNegative expression. 10507 return_mk_fp_unary_pred(Z3_mk_fpa_is_negative, a, ctx)
def fpIsNegative(a, ctx=None)
◆ fpIsNormal() def z3py.fpIsNormal ( a, ctx =None
)
Create a Z3 floating-point isNormal expression.
Definition at line 10492 of file z3py.py.
10493 """Create a Z3 floating-point isNormal expression. 10495 return_mk_fp_unary_pred(Z3_mk_fpa_is_normal, a, ctx)
def fpIsNormal(a, ctx=None)
◆ fpIsPositive() def z3py.fpIsPositive ( a, ctx =None
)
Create a Z3 floating-point isPositive expression.
Definition at line 10510 of file z3py.py.
10511 """Create a Z3 floating-point isPositive expression. 10513 return_mk_fp_unary_pred(Z3_mk_fpa_is_positive, a, ctx)
def fpIsPositive(a, ctx=None)
◆ fpIsSubnormal() def z3py.fpIsSubnormal ( a, ctx =None
)
Create a Z3 floating-point isSubnormal expression.
Definition at line 10498 of file z3py.py.
10499 """Create a Z3 floating-point isSubnormal expression. 10501 return_mk_fp_unary_pred(Z3_mk_fpa_is_subnormal, a, ctx)
def fpIsSubnormal(a, ctx=None)
◆ fpIsZero() def z3py.fpIsZero ( a, ctx =None
)
Create a Z3 floating-point isZero expression.
Definition at line 10486 of file z3py.py.
10487 """Create a Z3 floating-point isZero expression. 10489 return_mk_fp_unary_pred(Z3_mk_fpa_is_zero, a, ctx)
def fpIsZero(a, ctx=None)
◆ fpLEQ() def z3py.fpLEQ ( a, b, ctx =None
)
Create the Z3 floating-point expression `other <= self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpLEQ(x, y) x <= y >>> (x <= y).sexpr() '(fp.leq x y)'
Definition at line 10533 of file z3py.py.
10533 def fpLEQ(a, b, ctx=None):
10534 """Create the Z3 floating-point expression `other <= self`. 10536 >>> x, y = FPs('x y', FPSort(8, 24)) 10539 >>> (x <= y).sexpr() 10542 return_mk_fp_bin_pred(Z3_mk_fpa_leq, a, b, ctx)
def fpLEQ(a, b, ctx=None)
Referenced by FPRef.__le__().
◆ fpLT() def z3py.fpLT ( a, b, ctx =None
)
Create the Z3 floating-point expression `other < self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpLT(x, y) x < y >>> (x < y).sexpr() '(fp.lt x y)'
Definition at line 10521 of file z3py.py.
10521 def fpLT(a, b, ctx=None):
10522 """Create the Z3 floating-point expression `other < self`. 10524 >>> x, y = FPs('x y', FPSort(8, 24)) 10527 >>> (x < y).sexpr() 10530 return_mk_fp_bin_pred(Z3_mk_fpa_lt, a, b, ctx)
Referenced by FPRef.__lt__().
◆ fpMax() def z3py.fpMax ( a, b, ctx =None
)
Create a Z3 floating-point maximum expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpMax(x, y) fpMax(x, y) >>> fpMax(x, y).sort() FPSort(8, 24)
Definition at line 10430 of file z3py.py.
10430 def fpMax(a, b, ctx=None):
10431 """Create a Z3 floating-point maximum expression. 10433 >>> s = FPSort(8, 24) 10439 >>> fpMax(x, y).sort() 10442 return_mk_fp_bin_norm(Z3_mk_fpa_max, a, b, ctx)
def fpMax(a, b, ctx=None)
◆ fpMin() def z3py.fpMin ( a, b, ctx =None
)
Create a Z3 floating-point minimum expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpMin(x, y) fpMin(x, y) >>> fpMin(x, y).sort() FPSort(8, 24)
Definition at line 10415 of file z3py.py.
10415 def fpMin(a, b, ctx=None):
10416 """Create a Z3 floating-point minimum expression. 10418 >>> s = FPSort(8, 24) 10424 >>> fpMin(x, y).sort() 10427 return_mk_fp_bin_norm(Z3_mk_fpa_min, a, b, ctx)
def fpMin(a, b, ctx=None)
◆ fpMinusInfinity() def z3py.fpMinusInfinity ( s )Create a Z3 floating-point -oo term.
Definition at line 10127 of file z3py.py.
10128 """Create a Z3 floating-point -oo term.""" 10129_z3_assert(isinstance(s, FPSortRef),
"sort mismatch")
10130 returnFPNumRef(
Z3_mk_fpa_inf(s.ctx_ref(), s.ast,
True), s.ctx)
Referenced by FPVal().
◆ fpMinusZero() def z3py.fpMinusZero ( s )Create a Z3 floating-point -0.0 term.
Definition at line 10146 of file z3py.py.
10147 """Create a Z3 floating-point -0.0 term.""" 10148_z3_assert(isinstance(s, FPSortRef),
"sort mismatch")
10149 returnFPNumRef(
Z3_mk_fpa_zero(s.ctx_ref(), s.ast,
True), s.ctx)
Z3_ast Z3_API Z3_mk_fpa_zero(Z3_context c, Z3_sort s, bool negative)
Create a floating-point zero of sort s.
Referenced by FPVal().
◆ fpMul() def z3py.fpMul ( rm, a, b, ctx =None
)
Create a Z3 floating-point multiplication expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpMul(rm, x, y) x * y >>> fpMul(rm, x, y).sort() FPSort(8, 24)
Definition at line 10371 of file z3py.py.
10371 def fpMul(rm, a, b, ctx=None):
10372 """Create a Z3 floating-point multiplication expression. 10374 >>> s = FPSort(8, 24) 10378 >>> fpMul(rm, x, y) 10380 >>> fpMul(rm, x, y).sort() 10383 return_mk_fp_bin(Z3_mk_fpa_mul, rm, a, b, ctx)
def fpMul(rm, a, b, ctx=None)
Referenced by FPRef.__mul__(), and FPRef.__rmul__().
◆ fpNaN()Create a Z3 floating-point NaN term. >>> s = FPSort(8, 24) >>> set_fpa_pretty(True) >>> fpNaN(s) NaN >>> pb = get_fpa_pretty() >>> set_fpa_pretty(False) >>> fpNaN(s) fpNaN(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 10093 of file z3py.py.
10094 """Create a Z3 floating-point NaN term. 10096 >>> s = FPSort(8, 24) 10097 >>> set_fpa_pretty(True) 10100 >>> pb = get_fpa_pretty() 10101 >>> set_fpa_pretty(False) 10103 fpNaN(FPSort(8, 24)) 10104 >>> set_fpa_pretty(pb) 10106_z3_assert(isinstance(s, FPSortRef),
"sort mismatch")
10107 returnFPNumRef(
Z3_mk_fpa_nan(s.ctx_ref(), s.ast), s.ctx)
Z3_ast Z3_API Z3_mk_fpa_nan(Z3_context c, Z3_sort s)
Create a floating-point NaN of sort s.
Referenced by FPVal().
◆ fpNeg() def z3py.fpNeg ( a, ctx =None
)
Create a Z3 floating-point addition expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> fpNeg(x) -x >>> fpNeg(x).sort() FPSort(8, 24)
Definition at line 10271 of file z3py.py.
10271 def fpNeg(a, ctx=None):
10272 """Create a Z3 floating-point addition expression. 10274 >>> s = FPSort(8, 24) 10279 >>> fpNeg(x).sort() 10282ctx = _get_ctx(ctx)
10283[a] = _coerce_fp_expr_list([a], ctx)
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.
Referenced by FPRef.__neg__().
◆ fpNEQ() def z3py.fpNEQ ( a, b, ctx =None
)
Create the Z3 floating-point expression `Not(fpEQ(other, self))`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpNEQ(x, y) Not(fpEQ(x, y)) >>> (x != y).sexpr() '(distinct x y)'
Definition at line 10581 of file z3py.py.
10581 def fpNEQ(a, b, ctx=None):
10582 """Create the Z3 floating-point expression `Not(fpEQ(other, self))`. 10584 >>> x, y = FPs('x y', FPSort(8, 24)) 10587 >>> (x != y).sexpr() 10590 return Not(
fpEQ(a, b, ctx))
def fpNEQ(a, b, ctx=None)
◆ fpPlusInfinity() def z3py.fpPlusInfinity ( s )Create a Z3 floating-point +oo term. >>> s = FPSort(8, 24) >>> pb = get_fpa_pretty() >>> set_fpa_pretty(True) >>> fpPlusInfinity(s) +oo >>> set_fpa_pretty(False) >>> fpPlusInfinity(s) fpPlusInfinity(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 10110 of file z3py.py.
10111 """Create a Z3 floating-point +oo term. 10113 >>> s = FPSort(8, 24) 10114 >>> pb = get_fpa_pretty() 10115 >>> set_fpa_pretty(True) 10116 >>> fpPlusInfinity(s) 10118 >>> set_fpa_pretty(False) 10119 >>> fpPlusInfinity(s) 10120 fpPlusInfinity(FPSort(8, 24)) 10121 >>> set_fpa_pretty(pb) 10123_z3_assert(isinstance(s, FPSortRef),
"sort mismatch")
10124 returnFPNumRef(
Z3_mk_fpa_inf(s.ctx_ref(), s.ast,
False), s.ctx)
Referenced by FPVal().
◆ fpPlusZero() def z3py.fpPlusZero ( s )Create a Z3 floating-point +0.0 term.
Definition at line 10140 of file z3py.py.
10141 """Create a Z3 floating-point +0.0 term.""" 10142_z3_assert(isinstance(s, FPSortRef),
"sort mismatch")
10143 returnFPNumRef(
Z3_mk_fpa_zero(s.ctx_ref(), s.ast,
False), s.ctx)
Referenced by FPVal().
◆ fpRealToFP() def z3py.fpRealToFP ( rm, v, sort, ctx =None
)
Create a Z3 floating-point conversion expression that represents the conversion from a real term to a floating-point term. >>> x_r = RealVal(1.5) >>> x_fp = fpRealToFP(RNE(), x_r, Float32()) >>> x_fp fpToFP(RNE(), 3/2) >>> simplify(x_fp) 1.5
Definition at line 10698 of file z3py.py.
10699 """Create a Z3 floating-point conversion expression that represents the 10700 conversion from a real term to a floating-point term. 10702 >>> x_r = RealVal(1.5) 10703 >>> x_fp = fpRealToFP(RNE(), x_r, Float32()) 10709_z3_assert(
is_fprm(rm),
"First argument must be a Z3 floating-point rounding mode expression.")
10710_z3_assert(
is_real(v),
"Second argument must be a Z3 expression or real sort.")
10711_z3_assert(
is_fp_sort(sort),
"Third argument must be a Z3 floating-point sort.")
10712ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_fpa_to_fp_real(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a term of real sort into a term of FloatingPoint sort.
def fpRealToFP(rm, v, sort, ctx=None)
◆ fpRem() def z3py.fpRem ( a, b, ctx =None
)
Create a Z3 floating-point remainder expression. >>> s = FPSort(8, 24) >>> x = FP('x', s) >>> y = FP('y', s) >>> fpRem(x, y) fpRem(x, y) >>> fpRem(x, y).sort() FPSort(8, 24)
Definition at line 10401 of file z3py.py.
10401 def fpRem(a, b, ctx=None):
10402 """Create a Z3 floating-point remainder expression. 10404 >>> s = FPSort(8, 24) 10409 >>> fpRem(x, y).sort() 10412 return_mk_fp_bin_norm(Z3_mk_fpa_rem, a, b, ctx)
def fpRem(a, b, ctx=None)
Referenced by FPRef.__mod__(), and FPRef.__rmod__().
◆ fpRoundToIntegral() def z3py.fpRoundToIntegral ( rm, a, ctx =None
)
Create a Z3 floating-point roundToIntegral expression.
Definition at line 10457 of file z3py.py.
10458 """Create a Z3 floating-point roundToIntegral expression. 10460 return_mk_fp_unary(Z3_mk_fpa_round_to_integral, rm, a, ctx)
def fpRoundToIntegral(rm, a, ctx=None)
◆ FPs() def z3py.FPs ( names, fpsort, ctx =None
)
Return an array of floating-point constants. >>> x, y, z = FPs('x y z', FPSort(8, 24)) >>> x.sort() FPSort(8, 24) >>> x.sbits() 24 >>> x.ebits() 8 >>> fpMul(RNE(), fpAdd(RNE(), x, y), z) (x + y) * z
Definition at line 10229 of file z3py.py.
10229 def FPs(names, fpsort, ctx=None):
10230 """Return an array of floating-point constants. 10232 >>> x, y, z = FPs('x y z', FPSort(8, 24)) 10239 >>> fpMul(RNE(), fpAdd(RNE(), x, y), z) 10242ctx = _get_ctx(ctx)
10243 ifisinstance(names, str):
10244names = names.split(
" ")
10245 return[
FP(name, fpsort, ctx)
forname
innames]
def FPs(names, fpsort, ctx=None)
◆ fpSignedToFP() def z3py.fpSignedToFP ( rm, v, sort, ctx =None
)
Create a Z3 floating-point conversion expression that represents the conversion from a signed bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFP(RNE(), 4294967291) >>> simplify(x_fp) -1.25*(2**2)
Definition at line 10716 of file z3py.py.
10717 """Create a Z3 floating-point conversion expression that represents the 10718 conversion from a signed bit-vector term (encoding an integer) to a floating-point term. 10720 >>> x_signed = BitVecVal(-5, BitVecSort(32)) 10721 >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32()) 10723 fpToFP(RNE(), 4294967291) 10727_z3_assert(
is_fprm(rm),
"First argument must be a Z3 floating-point rounding mode expression.")
10728_z3_assert(
is_bv(v),
"Second argument must be a Z3 bit-vector expression")
10729_z3_assert(
is_fp_sort(sort),
"Third argument must be a Z3 floating-point sort.")
10730ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.
def fpSignedToFP(rm, v, sort, ctx=None)
◆ FPSort() def z3py.FPSort ( ebits, sbits, ctx =None
)
Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used. >>> Single = FPSort(8, 24) >>> Double = FPSort(11, 53) >>> Single FPSort(8, 24) >>> x = Const('x', Single) >>> eq(x, FP('x', FPSort(8, 24))) True
Definition at line 10034 of file z3py.py.
10034 def FPSort(ebits, sbits, ctx=None):
10035 """Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used. 10037 >>> Single = FPSort(8, 24) 10038 >>> Double = FPSort(11, 53) 10041 >>> x = Const('x', Single) 10042 >>> eq(x, FP('x', FPSort(8, 24))) 10045ctx = _get_ctx(ctx)
10046 returnFPSortRef(
Z3_mk_fpa_sort(ctx.ref(), ebits, sbits), ctx)
Z3_sort Z3_API Z3_mk_fpa_sort(Z3_context c, unsigned ebits, unsigned sbits)
Create a FloatingPoint sort.
def FPSort(ebits, sbits, ctx=None)
Referenced by get_default_fp_sort(), Context.mkFPSort(), Context.MkFPSort(), Context.MkFPSort128(), Context.mkFPSort128(), Context.MkFPSort16(), Context.mkFPSort16(), Context.MkFPSort32(), Context.mkFPSort32(), Context.MkFPSort64(), Context.mkFPSort64(), Context.MkFPSortDouble(), Context.mkFPSortDouble(), Context.MkFPSortHalf(), Context.mkFPSortHalf(), Context.MkFPSortQuadruple(), Context.mkFPSortQuadruple(), Context.MkFPSortSingle(), and Context.mkFPSortSingle().
◆ fpSqrt() def z3py.fpSqrt ( rm, a, ctx =None
)
Create a Z3 floating-point square root expression.
Definition at line 10451 of file z3py.py.
10451 def fpSqrt(rm, a, ctx=None):
10452 """Create a Z3 floating-point square root expression. 10454 return_mk_fp_unary(Z3_mk_fpa_sqrt, rm, a, ctx)
def fpSqrt(rm, a, ctx=None)
◆ fpSub() def z3py.fpSub ( rm, a, b, ctx =None
)
Create a Z3 floating-point subtraction expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpSub(rm, x, y) x - y >>> fpSub(rm, x, y).sort() FPSort(8, 24)
Definition at line 10356 of file z3py.py.
10356 def fpSub(rm, a, b, ctx=None):
10357 """Create a Z3 floating-point subtraction expression. 10359 >>> s = FPSort(8, 24) 10363 >>> fpSub(rm, x, y) 10365 >>> fpSub(rm, x, y).sort() 10368 return_mk_fp_bin(Z3_mk_fpa_sub, rm, a, b, ctx)
def fpSub(rm, a, b, ctx=None)
Referenced by FPRef.__rsub__(), and FPRef.__sub__().
◆ fpToFP() def z3py.fpToFP ( a1, a2 =None
, a3 = None
, ctx = None
)
Create a Z3 floating-point conversion expression from other term sorts to floating-point. From a bit-vector term in IEEE 754-2008 format: >>> x = FPVal(1.0, Float32()) >>> x_bv = fpToIEEEBV(x) >>> simplify(fpToFP(x_bv, Float32())) 1 From a floating-point term with different precision: >>> x = FPVal(1.0, Float32()) >>> x_db = fpToFP(RNE(), x, Float64()) >>> x_db.sort() FPSort(11, 53) From a real term: >>> x_r = RealVal(1.5) >>> simplify(fpToFP(RNE(), x_r, Float32())) 1.5 From a signed bit-vector term: >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> simplify(fpToFP(RNE(), x_signed, Float32())) -1.25*(2**2)
Definition at line 10622 of file z3py.py.
10622 def fpToFP(a1, a2=None, a3=None, ctx=None):
10623 """Create a Z3 floating-point conversion expression from other term sorts 10626 From a bit-vector term in IEEE 754-2008 format: 10627 >>> x = FPVal(1.0, Float32()) 10628 >>> x_bv = fpToIEEEBV(x) 10629 >>> simplify(fpToFP(x_bv, Float32())) 10632 From a floating-point term with different precision: 10633 >>> x = FPVal(1.0, Float32()) 10634 >>> x_db = fpToFP(RNE(), x, Float64()) 10639 >>> x_r = RealVal(1.5) 10640 >>> simplify(fpToFP(RNE(), x_r, Float32())) 10643 From a signed bit-vector term: 10644 >>> x_signed = BitVecVal(-5, BitVecSort(32)) 10645 >>> simplify(fpToFP(RNE(), x_signed, Float32())) 10648ctx = _get_ctx(ctx)
10658 raiseZ3Exception(
"Unsupported combination of arguments for conversion to floating-point term.")
def fpToFP(a1, a2=None, a3=None, ctx=None)
◆ fpToFPUnsigned() def z3py.fpToFPUnsigned ( rm, x, s, ctx =None
)
Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.
Definition at line 10752 of file z3py.py.
10753 """Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.""" 10755_z3_assert(
is_fprm(rm),
"First argument must be a Z3 floating-point rounding mode expression")
10756_z3_assert(
is_bv(x),
"Second argument must be a Z3 bit-vector expression")
10757_z3_assert(
is_fp_sort(s),
"Third argument must be Z3 floating-point sort")
10758ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.
def fpToFPUnsigned(rm, x, s, ctx=None)
◆ fpToIEEEBV() def z3py.fpToIEEEBV ( x, ctx =None
)
\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format. The size of the resulting bit-vector is automatically determined. Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion knows only one NaN and it will always produce the same bit-vector representation of that NaN. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToIEEEBV(x) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
Definition at line 10826 of file z3py.py.
10827 """\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format. 10829 The size of the resulting bit-vector is automatically determined. 10831 Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion 10832 knows only one NaN and it will always produce the same bit-vector representation of 10835 >>> x = FP('x', FPSort(8, 24)) 10836 >>> y = fpToIEEEBV(x) 10837 >>> print(is_fp(x)) 10839 >>> print(is_bv(y)) 10841 >>> print(is_fp(y)) 10843 >>> print(is_bv(x)) 10847_z3_assert(
is_fp(x),
"First argument must be a Z3 floating-point expression")
10848ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
def fpToIEEEBV(x, ctx=None)
◆ fpToReal() def z3py.fpToReal ( x, ctx =None
)
Create a Z3 floating-point conversion expression, from floating-point expression to real. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToReal(x) >>> print(is_fp(x)) True >>> print(is_real(y)) True >>> print(is_fp(y)) False >>> print(is_real(x)) False
Definition at line 10806 of file z3py.py.
10807 """Create a Z3 floating-point conversion expression, from floating-point expression to real. 10809 >>> x = FP('x', FPSort(8, 24)) 10810 >>> y = fpToReal(x) 10811 >>> print(is_fp(x)) 10813 >>> print(is_real(y)) 10815 >>> print(is_fp(y)) 10817 >>> print(is_real(x)) 10821_z3_assert(
is_fp(x),
"First argument must be a Z3 floating-point expression")
10822ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_fpa_to_real(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a real-numbered term.
def fpToReal(x, ctx=None)
◆ fpToSBV() def z3py.fpToSBV ( rm, x, s, ctx =None
)
Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToSBV(RTZ(), x, BitVecSort(32)) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
Definition at line 10762 of file z3py.py.
10762 def fpToSBV(rm, x, s, ctx=None):
10763 """Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector. 10765 >>> x = FP('x', FPSort(8, 24)) 10766 >>> y = fpToSBV(RTZ(), x, BitVecSort(32)) 10767 >>> print(is_fp(x)) 10769 >>> print(is_bv(y)) 10771 >>> print(is_fp(y)) 10773 >>> print(is_bv(x)) 10777_z3_assert(
is_fprm(rm),
"First argument must be a Z3 floating-point rounding mode expression")
10778_z3_assert(
is_fp(x),
"Second argument must be a Z3 floating-point expression")
10779_z3_assert(
is_bv_sort(s),
"Third argument must be Z3 bit-vector sort")
10780ctx = _get_ctx(ctx)
10781 returnBitVecRef(
Z3_mk_fpa_to_sbv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into a signed bit-vector.
def fpToSBV(rm, x, s, ctx=None)
◆ fpToUBV() def z3py.fpToUBV ( rm, x, s, ctx =None
)
Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToUBV(RTZ(), x, BitVecSort(32)) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
Definition at line 10784 of file z3py.py.
10784 def fpToUBV(rm, x, s, ctx=None):
10785 """Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector. 10787 >>> x = FP('x', FPSort(8, 24)) 10788 >>> y = fpToUBV(RTZ(), x, BitVecSort(32)) 10789 >>> print(is_fp(x)) 10791 >>> print(is_bv(y)) 10793 >>> print(is_fp(y)) 10795 >>> print(is_bv(x)) 10799_z3_assert(
is_fprm(rm),
"First argument must be a Z3 floating-point rounding mode expression")
10800_z3_assert(
is_fp(x),
"Second argument must be a Z3 floating-point expression")
10801_z3_assert(
is_bv_sort(s),
"Third argument must be Z3 bit-vector sort")
10802ctx = _get_ctx(ctx)
10803 returnBitVecRef(
Z3_mk_fpa_to_ubv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into an unsigned bit-vector.
def fpToUBV(rm, x, s, ctx=None)
◆ fpUnsignedToFP() def z3py.fpUnsignedToFP ( rm, v, sort, ctx =None
)
Create a Z3 floating-point conversion expression that represents the conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFPUnsigned(RNE(), 4294967291) >>> simplify(x_fp) 1*(2**32)
Definition at line 10734 of file z3py.py.
10735 """Create a Z3 floating-point conversion expression that represents the 10736 conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term. 10738 >>> x_signed = BitVecVal(-5, BitVecSort(32)) 10739 >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32()) 10741 fpToFPUnsigned(RNE(), 4294967291) 10745_z3_assert(
is_fprm(rm),
"First argument must be a Z3 floating-point rounding mode expression.")
10746_z3_assert(
is_bv(v),
"Second argument must be a Z3 bit-vector expression")
10747_z3_assert(
is_fp_sort(sort),
"Third argument must be a Z3 floating-point sort.")
10748ctx = _get_ctx(ctx)
def fpUnsignedToFP(rm, v, sort, ctx=None)
◆ FPVal() def z3py.FPVal ( sig, exp =None
, fps = None
, ctx = None
)
Return a floating-point value of value `val` and sort `fps`. If `ctx=None`, then the global context is used. >>> v = FPVal(20.0, FPSort(8, 24)) >>> v 1.25*(2**4) >>> print("0x%.8x" % v.exponent_as_long(False)) 0x00000004 >>> v = FPVal(2.25, FPSort(8, 24)) >>> v 1.125*(2**1) >>> v = FPVal(-2.25, FPSort(8, 24)) >>> v -1.125*(2**1) >>> FPVal(-0.0, FPSort(8, 24)) -0.0 >>> FPVal(0.0, FPSort(8, 24)) +0.0 >>> FPVal(+0.0, FPSort(8, 24)) +0.0
Definition at line 10159 of file z3py.py.
10159 def FPVal(sig, exp=None, fps=None, ctx=None):
10160 """Return a floating-point value of value `val` and sort `fps`. 10161 If `ctx=None`, then the global context is used. 10163 >>> v = FPVal(20.0, FPSort(8, 24)) 10166 >>> print("0x%.8x" % v.exponent_as_long(False)) 10168 >>> v = FPVal(2.25, FPSort(8, 24)) 10171 >>> v = FPVal(-2.25, FPSort(8, 24)) 10174 >>> FPVal(-0.0, FPSort(8, 24)) 10176 >>> FPVal(0.0, FPSort(8, 24)) 10178 >>> FPVal(+0.0, FPSort(8, 24)) 10181ctx = _get_ctx(ctx)
10186fps = _dflt_fps(ctx)
10187_z3_assert(
is_fp_sort(fps),
"sort mismatch")
10190val = _to_float_str(sig)
10191 ifval ==
"NaN" orval ==
"nan":
10193 elifval ==
"-0.0":
10195 elifval ==
"0.0" orval ==
"+0.0":
10197 elifval ==
"+oo" orval ==
"+inf" orval ==
"+Inf":
10199 elifval ==
"-oo" orval ==
"-inf" orval ==
"-Inf":
10202 returnFPNumRef(
Z3_mk_numeral(ctx.ref(), val, fps.ast), ctx)
def FPVal(sig, exp=None, fps=None, ctx=None)
Referenced by set_default_fp_sort().
◆ fpZero() def z3py.fpZero ( s, negative )Create a Z3 floating-point +0.0 or -0.0 term.
Definition at line 10152 of file z3py.py.
10152 def fpZero(s, negative):
10153 """Create a Z3 floating-point +0.0 or -0.0 term.""" 10154_z3_assert(isinstance(s, FPSortRef),
"sort mismatch")
10155_z3_assert(isinstance(negative, bool),
"expected Boolean flag")
10156 returnFPNumRef(
Z3_mk_fpa_zero(s.ctx_ref(), s.ast, negative), s.ctx)
◆ FreshBool() def z3py.FreshBool ( prefix ="b"
, ctx = None
)
Return a fresh Boolean constant in the given context using the given prefix. If `ctx=None`, then the global context is used. >>> b1 = FreshBool() >>> b2 = FreshBool() >>> eq(b1, b2) False
Definition at line 1811 of file z3py.py.
1812 """Return a fresh Boolean constant in the given context using the given prefix. 1814 If `ctx=None`, then the global context is used. 1816 >>> b1 = FreshBool() 1817 >>> b2 = FreshBool()Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty)
Declare and create a fresh constant.
def FreshBool(prefix="b", ctx=None)
◆ FreshConst() def z3py.FreshConst ( sort, prefix ="c"
)
Create a fresh constant of a specified sort
Definition at line 1482 of file z3py.py.
1483 """Create a fresh constant of a specified sort""" 1484ctx = _get_ctx(sort.ctx)
def FreshConst(sort, prefix="c")
◆ FreshFunction() def z3py.FreshFunction ( * sig )Create a new fresh Z3 uninterpreted function with the given sorts.
Definition at line 904 of file z3py.py.
905 """Create a new fresh Z3 uninterpreted function with the given sorts. 909_z3_assert(len(sig) > 0,
"At least two arguments expected")
913_z3_assert(
is_sort(rng),
"Z3 sort expected")
914dom = (z3.Sort * arity)()
915 fori
in range(arity):
917_z3_assert(
is_sort(sig[i]),
"Z3 sort expected")
Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a fresh constant or function.
◆ FreshInt() def z3py.FreshInt ( prefix ="x"
, ctx = None
)
Return a fresh integer constant in the given context using the given prefix. >>> x = FreshInt() >>> y = FreshInt() >>> eq(x, y) False >>> x.sort() Int
Definition at line 3333 of file z3py.py.
3333 def FreshInt(prefix="x", ctx=None):
3334 """Return a fresh integer constant in the given context using the given prefix.def FreshInt(prefix="x", ctx=None)
◆ FreshReal() def z3py.FreshReal ( prefix ="b"
, ctx = None
)
Return a fresh real constant in the given context using the given prefix. >>> x = FreshReal() >>> y = FreshReal() >>> eq(x, y) False >>> x.sort() Real
Definition at line 3390 of file z3py.py.
3391 """Return a fresh real constant in the given context using the given prefix.def FreshReal(prefix="b", ctx=None)
◆ Full()Create the regular expression that accepts the universal language >>> e = Full(ReSort(SeqSort(IntSort()))) >>> print(e) Full(ReSort(Seq(Int))) >>> e1 = Full(ReSort(StringSort())) >>> print(e1) Full(ReSort(String))
Definition at line 11108 of file z3py.py.
11109 """Create the regular expression that accepts the universal language 11110 >>> e = Full(ReSort(SeqSort(IntSort()))) 11112 Full(ReSort(Seq(Int))) 11113 >>> e1 = Full(ReSort(StringSort())) 11115 Full(ReSort(String)) 11117 ifisinstance(s, ReSortRef):
11119 raiseZ3Exception(
"Non-sequence, non-regular expression sort passed to Full")
Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re)
Create an universal regular expression of sort re.
◆ FullSet()Create the full set >>> FullSet(IntSort()) K(Int, True)
Definition at line 4977 of file z3py.py.
4978 """Create the full set 4979 >>> FullSet(IntSort())Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)
Create the full set.
◆ Function() def z3py.Function ( name, * sig )Create a new Z3 uninterpreted function with the given sorts. >>> f = Function('f', IntSort(), IntSort()) >>> f(f(0)) f(f(0))
Definition at line 881 of file z3py.py.
882 """Create a new Z3 uninterpreted function with the given sorts. 884 >>> f = Function('f', IntSort(), IntSort()) 890_z3_assert(len(sig) > 0,
"At least two arguments expected")
894_z3_assert(
is_sort(rng),
"Z3 sort expected")
895dom = (Sort * arity)()
896 fori
in range(arity):
898_z3_assert(
is_sort(sig[i]),
"Z3 sort expected")
Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a constant or function.
◆ get_as_array_func() def z3py.get_as_array_func ( n )Return the function declaration f associated with a Z3 expression of the form (_ as-array f).
Definition at line 6745 of file z3py.py.
6746 """Return the function declaration f associated with a Z3 expression of the form (_ as-array f).""" 6748_z3_assert(
is_as_array(n),
"as-array Z3 expression expected.")
Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a)
Return the function declaration f associated with a (_ as_array f) node.
Referenced by ModelRef.get_interp().
◆ get_ctx() ◆ get_default_fp_sort() def z3py.get_default_fp_sort ( ctx =None
) ◆ get_default_rounding_mode() def z3py.get_default_rounding_mode ( ctx = None
)
Retrieves the global default rounding mode.
Definition at line 9423 of file z3py.py.
9424 """Retrieves the global default rounding mode.""" 9425 global_dflt_rounding_mode
9426 if_dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO:
9428 elif_dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE:
9430 elif_dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE:
9432 elif_dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN:
9434 elif_dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY:
def get_default_rounding_mode(ctx=None)
Referenced by set_default_fp_sort().
◆ get_full_version() def z3py.get_full_version ( )Definition at line 101 of file z3py.py.
Z3_string Z3_API Z3_get_full_version(void)
Return a string that fully describes the version of Z3 in use.
◆ get_map_func() def z3py.get_map_func ( a )Return the function declaration associated with a Z3 map array expression. >>> f = Function('f', IntSort(), IntSort()) >>> b = Array('b', IntSort(), IntSort()) >>> a = Map(f, b) >>> eq(f, get_map_func(a)) True >>> get_map_func(a) f >>> get_map_func(a)(0) f(0)
Definition at line 4722 of file z3py.py.
4723 """Return the function declaration associated with a Z3 map array expression. 4725 >>> f = Function('f', IntSort(), IntSort()) 4726 >>> b = Array('b', IntSort(), IntSort()) 4728 >>> eq(f, get_map_func(a)) 4732 >>> get_map_func(a)(0) 4736_z3_assert(
is_map(a),
"Z3 array map expression expected.")
Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a)
Convert an AST into a FUNC_DECL_AST. This is just type casting.
Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the expression value associated with an expression parameter.
◆ get_param() def z3py.get_param ( name )Return the value of a Z3 global (or module) parameter >>> get_param('nlsat.reorder') 'true'
Definition at line 307 of file z3py.py.
308 """Return the value of a Z3 global (or module) parameter 310 >>> get_param('nlsat.reorder') 313ptr = (ctypes.c_char_p * 1)()
315r = z3core._to_pystr(ptr[0])
317 raiseZ3Exception(
"failed to retrieve value for '%s'"% name)
bool Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value)
Get a global (or module) parameter.
◆ get_var_index() def z3py.get_var_index ( a )Return the de-Bruijn index of the Z3 bounded variable `a`. >>> x = Int('x') >>> y = Int('y') >>> is_var(x) False >>> is_const(x) True >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> # Z3 replaces x and y with bound variables when ForAll is executed. >>> q = ForAll([x, y], f(x, y) == x + y) >>> q.body() f(Var(1), Var(0)) == Var(1) + Var(0) >>> b = q.body() >>> b.arg(0) f(Var(1), Var(0)) >>> v1 = b.arg(0).arg(0) >>> v2 = b.arg(0).arg(1) >>> v1 Var(1) >>> v2 Var(0) >>> get_var_index(v1) 1 >>> get_var_index(v2) 0
Definition at line 1353 of file z3py.py.
1354 """Return the de-Bruijn index of the Z3 bounded variable `a`. 1362 >>> f = Function('f', IntSort(), IntSort(), IntSort()) 1363 >>> # Z3 replaces x and y with bound variables when ForAll is executed. 1364 >>> q = ForAll([x, y], f(x, y) == x + y) 1366 f(Var(1), Var(0)) == Var(1) + Var(0) 1370 >>> v1 = b.arg(0).arg(0) 1371 >>> v2 = b.arg(0).arg(1) 1376 >>> get_var_index(v1) 1378 >>> get_var_index(v2) 1382_z3_assert(
is_var(a),
"Z3 bound variable expected")
unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a)
Return index of de-Bruijn bound variable.
◆ get_version()Definition at line 92 of file z3py.py.
93major = ctypes.c_uint(0)
94minor = ctypes.c_uint(0)
95build = ctypes.c_uint(0)
96rev = ctypes.c_uint(0)
98 return(major.value, minor.value, build.value, rev.value)
void Z3_API Z3_get_version(unsigned *major, unsigned *minor, unsigned *build_number, unsigned *revision_number)
Return Z3 version number information.
◆ get_version_string() def z3py.get_version_string ( )Definition at line 83 of file z3py.py.
84major = ctypes.c_uint(0)
85minor = ctypes.c_uint(0)
86build = ctypes.c_uint(0)
87rev = ctypes.c_uint(0)
89 return "%s.%s.%s"% (major.value, minor.value, build.value)
◆ help_simplify() def z3py.help_simplify ( )Return a string describing all options available for Z3 `simplify` procedure.
Definition at line 8929 of file z3py.py.
8930 """Return a string describing all options available for Z3 `simplify` procedure."""Z3_string Z3_API Z3_simplify_get_help(Z3_context c)
Return a string describing all available parameters.
◆ If() def z3py.If ( a, b, c, ctx =None
)
Create a Z3 if-then-else expression. >>> x = Int('x') >>> y = Int('y') >>> max = If(x > y, x, y) >>> max If(x > y, x, y) >>> simplify(max) If(x <= y, y, x)
Definition at line 1399 of file z3py.py.
1399 def If(a, b, c, ctx=None):
1400 """Create a Z3 if-then-else expression. 1404 >>> max = If(x > y, x, y) 1410 ifisinstance(a, Probe)
orisinstance(b, Tactic)
orisinstance(c, Tactic):
1411 return Cond(a, b, c, ctx)
1413ctx = _get_ctx(_ctx_from_ast_arg_list([a, b, c], ctx))
1416b, c = _coerce_exprs(b, c, ctx)
1418_z3_assert(a.ctx == b.ctx,
"Context mismatch")
1419 return_to_expr_ref(
Z3_mk_ite(ctx.ref(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Referenced by BoolRef.__add__(), BoolRef.__mul__(), ArithRef.__mul__(), and Abs().
◆ Implies() def z3py.Implies ( a, b, ctx =None
)
Create a Z3 implies expression. >>> p, q = Bools('p q') >>> Implies(p, q) Implies(p, q)
Definition at line 1825 of file z3py.py.
1826 """Create a Z3 implies expression. 1828 >>> p, q = Bools('p q') 1832ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
1836 returnBoolRef(
Z3_mk_implies(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.
def Implies(a, b, ctx=None)
Referenced by Fixedpoint.add_rule(), and Fixedpoint.update_rule().
◆ IndexOf() def z3py.IndexOf ( s, substr, offset =None
)
Retrieve the index of substring within a string starting at a specified offset. >>> simplify(IndexOf("abcabc", "bc", 0)) 1 >>> simplify(IndexOf("abcabc", "bc", 2)) 4
Definition at line 11192 of file z3py.py.
11192 def IndexOf(s, substr, offset=None):
11193 """Retrieve the index of substring within a string starting at a specified offset. 11194 >>> simplify(IndexOf("abcabc", "bc", 0)) 11196 >>> simplify(IndexOf("abcabc", "bc", 2)) 11199 ifoffset
is None:
11204ctx = _get_ctx2(s, substr, ctx)
11205s = _coerce_seq(s, ctx)
11206substr = _coerce_seq(substr, ctx)
11207 if_is_int(offset):
11208offset =
IntVal(offset, ctx)
11209 returnArithRef(
Z3_mk_seq_index(s.ctx_ref(), s.as_ast(), substr.as_ast(), offset.as_ast()), s.ctx)
Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset)
Return index of the first occurrence of substr in s starting from offset offset. If s does not contai...
def IndexOf(s, substr, offset=None)
def IntVal(val, ctx=None)
◆ InRe()Create regular expression membership test >>> re = Union(Re("a"),Re("b")) >>> print (simplify(InRe("a", re))) True >>> print (simplify(InRe("b", re))) True >>> print (simplify(InRe("c", re))) False
Definition at line 11331 of file z3py.py.
11332 """Create regular expression membership test 11333 >>> re = Union(Re("a"),Re("b")) 11334 >>> print (simplify(InRe("a", re))) 11336 >>> print (simplify(InRe("b", re))) 11338 >>> print (simplify(InRe("c", re))) 11341s = _coerce_seq(s, re.ctx)
11342 returnBoolRef(
Z3_mk_seq_in_re(s.ctx_ref(), s.as_ast(), re.as_ast()), s.ctx)
Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re)
Check if seq is in the language generated by the regular expression re.
◆ Int() def z3py.Int ( name, ctx =None
)
Return an integer constant named `name`. If `ctx=None`, then the global context is used. >>> x = Int('x') >>> is_int(x) True >>> is_int(x + 1) True
Definition at line 3294 of file z3py.py.
3294 def Int(name, ctx=None):
3295 """Return an integer constant named `name`. If `ctx=None`, then the global context is used.Referenced by Ints(), and IntVector().
◆ Int2BV() def z3py.Int2BV ( a, num_bits )Return the z3 expression Int2BV(a, num_bits). It is a bit-vector of width num_bits and represents the modulo of a by 2^num_bits
Definition at line 4042 of file z3py.py.
4042 def Int2BV(a, num_bits):
4043 """Return the z3 expression Int2BV(a, num_bits). 4044 It is a bit-vector of width num_bits and represents the 4045 modulo of a by 2^num_bits 4048 returnBitVecRef(
Z3_mk_int2bv(ctx.ref(), num_bits, a.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.
◆ Intersect() def z3py.Intersect ( * args )Create intersection of regular expressions. >>> re = Intersect(Re("a"), Re("b"), Re("c"))
Definition at line 11365 of file z3py.py.
11366 """Create intersection of regular expressions. 11367 >>> re = Intersect(Re("a"), Re("b"), Re("c")) 11369args = _get_args(args)
11372_z3_assert(sz > 0,
"At least one argument expected.")
11373_z3_assert(all([
is_re(a)
fora
inargs]),
"All arguments must be regular expressions.")
11378 fori
in range(sz):
11379v[i] = args[i].as_ast()
Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[])
Create the intersection of the regular languages.
◆ Ints() def z3py.Ints ( names, ctx =None
)
Return a tuple of Integer constants. >>> x, y, z = Ints('x y z') >>> Sum(x, y, z) x + y + z
Definition at line 3307 of file z3py.py.
3307 def Ints(names, ctx=None):
3308 """Return a tuple of Integer constants. 3310 >>> x, y, z = Ints('x y z') 3315 ifisinstance(names, str):
3316names = names.split(
" ")
3317 return[
Int(name, ctx)
forname
innames]
def Ints(names, ctx=None)
◆ IntSort() def z3py.IntSort ( ctx =None
)
Return the integer sort in the given context. If `ctx=None`, then the global context is used. >>> IntSort() Int >>> x = Const('x', IntSort()) >>> is_int(x) True >>> x.sort() == IntSort() True >>> x.sort() == BoolSort() False
Definition at line 3188 of file z3py.py.
3189 """Return the integer sort in the given context. If `ctx=None`, then the global context is used. 3193 >>> x = Const('x', IntSort()) 3196 >>> x.sort() == IntSort() 3198 >>> x.sort() == BoolSort()Z3_sort Z3_API Z3_mk_int_sort(Z3_context c)
Create the integer type.
Referenced by FreshInt(), Context.getIntSort(), Int(), IntVal(), and Context.mkIntSort().
◆ IntToStr()Convert integer expression to string
Definition at line 11273 of file z3py.py.
11274 """Convert integer expression to string"""Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s)
Integer to string conversion.
◆ IntVal() def z3py.IntVal ( val, ctx =None
) ◆ IntVector() def z3py.IntVector ( prefix, sz, ctx = None
)
Return a list of integer constants of size `sz`. >>> X = IntVector('x', 3) >>> X [x__0, x__1, x__2] >>> Sum(X) x__0 + x__1 + x__2
Definition at line 3320 of file z3py.py.
3321 """Return a list of integer constants of size `sz`. 3323 >>> X = IntVector('x', 3) 3330 return[
Int(
"%s__%s"% (prefix, i), ctx)
fori
in range(sz)]
def IntVector(prefix, sz, ctx=None)
◆ is_add()Return `True` if `a` is an expression of the form b + c. >>> x, y = Ints('x y') >>> is_add(x + y) True >>> is_add(x - y) False
Definition at line 2842 of file z3py.py.
2843 """Return `True` if `a` is an expression of the form b + c. 2845 >>> x, y = Ints('x y') ◆ is_algebraic_value() def z3py.is_algebraic_value ( a )Return `True` if `a` is an algebraic value of sort Real. >>> is_algebraic_value(RealVal("3/5")) False >>> n = simplify(Sqrt(2)) >>> n 1.4142135623? >>> is_algebraic_value(n) True
Definition at line 2828 of file z3py.py.
2829 """Return `True` if `a` is an algebraic value of sort Real. 2831 >>> is_algebraic_value(RealVal("3/5")) 2833 >>> n = simplify(Sqrt(2)) 2836 >>> is_algebraic_value(n) 2839 return is_arith(a)
anda.is_real()
and_is_algebraic(a.ctx, a.as_ast())
def is_algebraic_value(a)
◆ is_and()Return `True` if `a` is a Z3 and expression. >>> p, q = Bools('p q') >>> is_and(And(p, q)) True >>> is_and(Or(p, q)) False
Definition at line 1661 of file z3py.py.
1662 """Return `True` if `a` is a Z3 and expression. 1664 >>> p, q = Bools('p q') 1665 >>> is_and(And(p, q)) 1667 >>> is_and(Or(p, q)) ◆ is_app()Return `True` if `a` is a Z3 function application. Note that, constants are function applications with 0 arguments. >>> a = Int('a') >>> is_app(a) True >>> is_app(a + 1) True >>> is_app(IntSort()) False >>> is_app(1) False >>> is_app(IntVal(1)) True >>> x = Int('x') >>> is_app(ForAll(x, x >= 0)) False
Definition at line 1283 of file z3py.py.
1284 """Return `True` if `a` is a Z3 function application. 1286 Note that, constants are function applications with 0 arguments. 1293 >>> is_app(IntSort()) 1297 >>> is_app(IntVal(1)) 1300 >>> is_app(ForAll(x, x >= 0)) 1303 if notisinstance(a, ExprRef):
1305k = _ast_kind(a.ctx, a)
1306 returnk == Z3_NUMERAL_AST
ork == Z3_APP_AST
Referenced by ExprRef.arg(), ExprRef.children(), ExprRef.decl(), is_app_of(), is_const(), is_quantifier(), Lambda(), ExprRef.num_args(), and RecAddDefinition().
◆ is_app_of() def z3py.is_app_of ( a, k )Return `True` if `a` is an application of the given kind `k`. >>> x = Int('x') >>> n = x + 1 >>> is_app_of(n, Z3_OP_ADD) True >>> is_app_of(n, Z3_OP_MUL) False
Definition at line 1386 of file z3py.py.
1387 """Return `True` if `a` is an application of the given kind `k`. 1391 >>> is_app_of(n, Z3_OP_ADD) 1393 >>> is_app_of(n, Z3_OP_MUL) 1396 return is_app(a)
anda.decl().kind() == k
Referenced by is_add(), is_and(), is_const_array(), is_default(), is_distinct(), is_div(), is_eq(), is_false(), is_ge(), is_gt(), is_idiv(), is_implies(), is_is_int(), is_K(), is_le(), is_lt(), is_map(), is_mod(), is_mul(), is_not(), is_or(), is_select(), is_store(), is_sub(), is_to_int(), is_to_real(), and is_true().
◆ is_arith()Return `True` if `a` is an arithmetical expression. >>> x = Int('x') >>> is_arith(x) True >>> is_arith(x + 1) True >>> is_arith(1) False >>> is_arith(IntVal(1)) True >>> y = Real('y') >>> is_arith(y) True >>> is_arith(y + 1) True
Definition at line 2715 of file z3py.py.
2716 """Return `True` if `a` is an arithmetical expression. 2725 >>> is_arith(IntVal(1)) 2733 returnisinstance(a, ArithRef)
Referenced by is_algebraic_value(), is_int(), is_int_value(), is_rational_value(), and is_real().
◆ is_arith_sort() def z3py.is_arith_sort ( s )Return `True` if s is an arithmetical sort (type). >>> is_arith_sort(IntSort()) True >>> is_arith_sort(RealSort()) True >>> is_arith_sort(BoolSort()) False >>> n = Int('x') + 1 >>> is_arith_sort(n.sort()) True
Definition at line 2414 of file z3py.py.
2415 """Return `True` if s is an arithmetical sort (type). 2417 >>> is_arith_sort(IntSort()) 2419 >>> is_arith_sort(RealSort()) 2421 >>> is_arith_sort(BoolSort()) 2423 >>> n = Int('x') + 1 2424 >>> is_arith_sort(n.sort()) 2427 returnisinstance(s, ArithSortRef)
Referenced by ArithSortRef.subsort().
◆ is_array()Return `True` if `a` is a Z3 array expression. >>> a = Array('a', IntSort(), IntSort()) >>> is_array(a) True >>> is_array(Store(a, 0, 1)) True >>> is_array(a[0]) False
Definition at line 4657 of file z3py.py.
4658 """Return `True` if `a` is a Z3 array expression. 4660 >>> a = Array('a', IntSort(), IntSort()) 4663 >>> is_array(Store(a, 0, 1)) 4668 returnisinstance(a, ArrayRef)
Referenced by Ext(), and Map().
◆ is_array_sort() def z3py.is_array_sort ( a )Definition at line 4653 of file z3py.py.
Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t)
Return the sort kind (e.g., array, tuple, int, bool, etc).
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.
Referenced by Default(), Ext(), Select(), and Update().
◆ is_as_array() def z3py.is_as_array ( n )Return true if n is a Z3 expression of the form (_ as-array f).
Definition at line 6740 of file z3py.py.
6741 """Return true if n is a Z3 expression of the form (_ as-array f).""" 6742 returnisinstance(n, ExprRef)
and Z3_is_as_array(n.ctx.ref(), n.as_ast())
bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a)
The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3....
Referenced by get_as_array_func(), and ModelRef.get_interp().
◆ is_ast()Return `True` if `a` is an AST node. >>> is_ast(10) False >>> is_ast(IntVal(10)) True >>> is_ast(Int('x')) True >>> is_ast(BoolSort()) True >>> is_ast(Function('f', IntSort(), IntSort())) True >>> is_ast("x") False >>> is_ast(Solver()) False
Definition at line 451 of file z3py.py.
452 """Return `True` if `a` is an AST node. 456 >>> is_ast(IntVal(10)) 460 >>> is_ast(BoolSort()) 462 >>> is_ast(Function('f', IntSort(), IntSort())) 469 returnisinstance(a, AstRef)
Referenced by eq(), AstRef.eq(), and ReSort().
◆ is_bool()Return `True` if `a` is a Z3 Boolean expression. >>> p = Bool('p') >>> is_bool(p) True >>> q = Bool('q') >>> is_bool(And(p, q)) True >>> x = Real('x') >>> is_bool(x) False >>> is_bool(x == 0) True
Definition at line 1611 of file z3py.py.
1612 """Return `True` if `a` is a Z3 Boolean expression. 1618 >>> is_bool(And(p, q)) 1626 returnisinstance(a, BoolRef)
Referenced by is_quantifier(), and prove().
◆ is_bv()Return `True` if `a` is a Z3 bit-vector expression. >>> b = BitVec('b', 32) >>> is_bv(b) True >>> is_bv(b + 10) True >>> is_bv(Int('x')) False
Definition at line 3990 of file z3py.py.
3991 """Return `True` if `a` is a Z3 bit-vector expression. 3993 >>> b = BitVec('b', 32) 4001 returnisinstance(a, BitVecRef)
Referenced by BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), Concat(), Extract(), fpBVToFP(), fpFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpUnsignedToFP(), is_bv_value(), Product(), RepeatBitVec(), SignExt(), Sum(), and ZeroExt().
◆ is_bv_sort() def z3py.is_bv_sort ( s )Return True if `s` is a Z3 bit-vector sort. >>> is_bv_sort(BitVecSort(32)) True >>> is_bv_sort(IntSort()) False
Definition at line 3522 of file z3py.py.
3523 """Return True if `s` is a Z3 bit-vector sort. 3525 >>> is_bv_sort(BitVecSort(32)) 3527 >>> is_bv_sort(IntSort()) 3530 returnisinstance(s, BitVecSortRef)
Referenced by BitVecVal(), fpToSBV(), fpToUBV(), and BitVecSortRef.subsort().
◆ is_bv_value() def z3py.is_bv_value ( a )Return `True` if `a` is a Z3 bit-vector numeral value. >>> b = BitVec('b', 32) >>> is_bv_value(b) False >>> b = BitVecVal(10, 32) >>> b 10 >>> is_bv_value(b) True
Definition at line 4004 of file z3py.py.
4005 """Return `True` if `a` is a Z3 bit-vector numeral value. 4007 >>> b = BitVec('b', 32) 4010 >>> b = BitVecVal(10, 32) 4016 return is_bv(a)
and_is_numeral(a.ctx, a.as_ast())
◆ is_const() ◆ is_const_array() def z3py.is_const_array ( a )Return `True` if `a` is a Z3 constant array. >>> a = K(IntSort(), 10) >>> is_const_array(a) True >>> a = Array('a', IntSort(), IntSort()) >>> is_const_array(a) False
Definition at line 4671 of file z3py.py.
4672 """Return `True` if `a` is a Z3 constant array. 4674 >>> a = K(IntSort(), 10) 4675 >>> is_const_array(a) 4677 >>> a = Array('a', IntSort(), IntSort()) 4678 >>> is_const_array(a) ◆ is_default() def z3py.is_default ( a )Return `True` if `a` is a Z3 default array expression. >>> d = Default(K(IntSort(), 10)) >>> is_default(d) True
Definition at line 4713 of file z3py.py.
4714 """Return `True` if `a` is a Z3 default array expression. 4715 >>> d = Default(K(IntSort(), 10)) 4719 return is_app_of(a, Z3_OP_ARRAY_DEFAULT)
◆ is_distinct() def z3py.is_distinct ( a )Return `True` if `a` is a Z3 distinct expression. >>> x, y, z = Ints('x y z') >>> is_distinct(x == y) False >>> is_distinct(Distinct(x, y, z)) True
Definition at line 1719 of file z3py.py.
1720 """Return `True` if `a` is a Z3 distinct expression. 1722 >>> x, y, z = Ints('x y z') 1723 >>> is_distinct(x == y) 1725 >>> is_distinct(Distinct(x, y, z)) ◆ is_div()Return `True` if `a` is an expression of the form b / c. >>> x, y = Reals('x y') >>> is_div(x / y) True >>> is_div(x + y) False >>> x, y = Ints('x y') >>> is_div(x / y) False >>> is_idiv(x / y) True
Definition at line 2878 of file z3py.py.
2879 """Return `True` if `a` is an expression of the form b / c. 2881 >>> x, y = Reals('x y') 2886 >>> x, y = Ints('x y') ◆ is_eq()Return `True` if `a` is a Z3 equality expression. >>> x, y = Ints('x y') >>> is_eq(x == y) True
Definition at line 1709 of file z3py.py.
1710 """Return `True` if `a` is a Z3 equality expression. 1712 >>> x, y = Ints('x y')Referenced by AstRef.__bool__().
◆ is_expr()Return `True` if `a` is a Z3 expression. >>> a = Int('a') >>> is_expr(a) True >>> is_expr(a + 1) True >>> is_expr(IntSort()) False >>> is_expr(1) False >>> is_expr(IntVal(1)) True >>> x = Int('x') >>> is_expr(ForAll(x, x >= 0)) True >>> is_expr(FPVal(1.0)) True
Definition at line 1260 of file z3py.py.
1261 """Return `True` if `a` is a Z3 expression. 1268 >>> is_expr(IntSort()) 1272 >>> is_expr(IntVal(1)) 1275 >>> is_expr(ForAll(x, x >= 0)) 1277 >>> is_expr(FPVal(1.0)) 1280 returnisinstance(a, ExprRef)
Referenced by SeqRef.__gt__(), SortRef.cast(), BoolSortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), FPSortRef.cast(), Cbrt(), CharFromBv(), CharIsDigit(), Concat(), deserialize(), Diff(), AlgebraicNumRef.index(), IndexOf(), IntToStr(), is_quantifier(), is_var(), K(), Loop(), MultiPattern(), Option(), Plus(), Range(), Replace(), SeqMapI(), simplify(), Sqrt(), Star(), StrFromCode(), StrToCode(), substitute(), substitute_funs(), substitute_vars(), and ModelRef.update_value().
◆ is_false()Return `True` if `a` is the Z3 false expression. >>> p = Bool('p') >>> is_false(p) False >>> is_false(False) False >>> is_false(BoolVal(False)) True
Definition at line 1647 of file z3py.py.
1648 """Return `True` if `a` is the Z3 false expression. 1655 >>> is_false(BoolVal(False))Referenced by AstRef.__bool__().
◆ is_finite_domain() def z3py.is_finite_domain ( a )Return `True` if `a` is a Z3 finite-domain expression. >>> s = FiniteDomainSort('S', 100) >>> b = Const('b', s) >>> is_finite_domain(b) True >>> is_finite_domain(Int('x')) False
Definition at line 7814 of file z3py.py.
7815 """Return `True` if `a` is a Z3 finite-domain expression. 7817 >>> s = FiniteDomainSort('S', 100) 7818 >>> b = Const('b', s) 7819 >>> is_finite_domain(b) 7821 >>> is_finite_domain(Int('x')) 7824 returnisinstance(a, FiniteDomainRef)
Referenced by is_finite_domain_value().
◆ is_finite_domain_sort() def z3py.is_finite_domain_sort ( s )Return True if `s` is a Z3 finite-domain sort. >>> is_finite_domain_sort(FiniteDomainSort('S', 100)) True >>> is_finite_domain_sort(IntSort()) False
Definition at line 7791 of file z3py.py.
7792 """Return True if `s` is a Z3 finite-domain sort. 7794 >>> is_finite_domain_sort(FiniteDomainSort('S', 100)) 7796 >>> is_finite_domain_sort(IntSort()) 7799 returnisinstance(s, FiniteDomainSortRef)
Referenced by FiniteDomainVal().
◆ is_finite_domain_value() def z3py.is_finite_domain_value ( a )Return `True` if `a` is a Z3 finite-domain value. >>> s = FiniteDomainSort('S', 100) >>> b = Const('b', s) >>> is_finite_domain_value(b) False >>> b = FiniteDomainVal(10, s) >>> b 10 >>> is_finite_domain_value(b) True
Definition at line 7868 of file z3py.py.
7869 """Return `True` if `a` is a Z3 finite-domain value. 7871 >>> s = FiniteDomainSort('S', 100) 7872 >>> b = Const('b', s) 7873 >>> is_finite_domain_value(b) 7875 >>> b = FiniteDomainVal(10, s) 7878 >>> is_finite_domain_value(b)def is_finite_domain_value(a)
◆ is_fp()Return `True` if `a` is a Z3 floating-point expression. >>> b = FP('b', FPSort(8, 24)) >>> is_fp(b) True >>> is_fp(b + 1.0) True >>> is_fp(Int('x')) False
Definition at line 10005 of file z3py.py.
10006 """Return `True` if `a` is a Z3 floating-point expression. 10008 >>> b = FP('b', FPSort(8, 24)) 10013 >>> is_fp(Int('x')) 10016 returnisinstance(a, FPRef)
Referenced by fpFPToFP(), fpIsPositive(), fpNeg(), fpToFP(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), is_fp_value(), and set_default_fp_sort().
◆ is_fp_sort() def z3py.is_fp_sort ( s )Return True if `s` is a Z3 floating-point sort. >>> is_fp_sort(FPSort(8, 24)) True >>> is_fp_sort(IntSort()) False
Definition at line 9589 of file z3py.py.
9590 """Return True if `s` is a Z3 floating-point sort. 9592 >>> is_fp_sort(FPSort(8, 24)) 9594 >>> is_fp_sort(IntSort()) 9597 returnisinstance(s, FPSortRef)
Referenced by fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpUnsignedToFP(), and FPVal().
◆ is_fp_value() def z3py.is_fp_value ( a )Return `True` if `a` is a Z3 floating-point numeral value. >>> b = FP('b', FPSort(8, 24)) >>> is_fp_value(b) False >>> b = FPVal(1.0, FPSort(8, 24)) >>> b 1 >>> is_fp_value(b) True
Definition at line 10019 of file z3py.py.
10020 """Return `True` if `a` is a Z3 floating-point numeral value. 10022 >>> b = FP('b', FPSort(8, 24)) 10025 >>> b = FPVal(1.0, FPSort(8, 24)) 10031 return is_fp(a)
and_is_numeral(a.ctx, a.ast)
◆ is_fprm()Return `True` if `a` is a Z3 floating-point rounding mode expression. >>> rm = RNE() >>> is_fprm(rm) True >>> rm = 1.0 >>> is_fprm(rm) False
Definition at line 9849 of file z3py.py.
9850 """Return `True` if `a` is a Z3 floating-point rounding mode expression. 9859 returnisinstance(a, FPRMRef)
Referenced by fpFPToFP(), fpNeg(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpToSBV(), fpToUBV(), fpUnsignedToFP(), and is_fprm_value().
◆ is_fprm_sort() def z3py.is_fprm_sort ( s )Return True if `s` is a Z3 floating-point rounding mode sort. >>> is_fprm_sort(FPSort(8, 24)) False >>> is_fprm_sort(RNE().sort()) True
Definition at line 9600 of file z3py.py.
9601 """Return True if `s` is a Z3 floating-point rounding mode sort. 9603 >>> is_fprm_sort(FPSort(8, 24)) 9605 >>> is_fprm_sort(RNE().sort()) 9608 returnisinstance(s, FPRMSortRef)
◆ is_fprm_value() def z3py.is_fprm_value ( a )Return `True` if `a` is a Z3 floating-point rounding mode numeral value.
Definition at line 9862 of file z3py.py.
9863 """Return `True` if `a` is a Z3 floating-point rounding mode numeral value.""" 9864 return is_fprm(a)
and_is_numeral(a.ctx, a.ast)
Referenced by set_default_rounding_mode().
◆ is_func_decl() def z3py.is_func_decl ( a )Return `True` if `a` is a Z3 function declaration. >>> f = Function('f', IntSort(), IntSort()) >>> is_func_decl(f) True >>> x = Real('x') >>> is_func_decl(x) False
Definition at line 868 of file z3py.py.
869 """Return `True` if `a` is a Z3 function declaration. 871 >>> f = Function('f', IntSort(), IntSort()) 878 returnisinstance(a, FuncDeclRef)
Referenced by Map(), prove(), substitute_funs(), and ModelRef.update_value().
◆ is_ge()Return `True` if `a` is an expression of the form b >= c. >>> x, y = Ints('x y') >>> is_ge(x >= y) True >>> is_ge(x == y) False
Definition at line 2943 of file z3py.py.
2944 """Return `True` if `a` is an expression of the form b >= c. 2946 >>> x, y = Ints('x y') ◆ is_gt()Return `True` if `a` is an expression of the form b > c. >>> x, y = Ints('x y') >>> is_gt(x > y) True >>> is_gt(x == y) False
Definition at line 2955 of file z3py.py.
2956 """Return `True` if `a` is an expression of the form b > c. 2958 >>> x, y = Ints('x y') ◆ is_idiv()Return `True` if `a` is an expression of the form b div c. >>> x, y = Ints('x y') >>> is_idiv(x / y) True >>> is_idiv(x + y) False
Definition at line 2895 of file z3py.py.
2896 """Return `True` if `a` is an expression of the form b div c. 2898 >>> x, y = Ints('x y') ◆ is_implies() def z3py.is_implies ( a )Return `True` if `a` is a Z3 implication expression. >>> p, q = Bools('p q') >>> is_implies(Implies(p, q)) True >>> is_implies(And(p, q)) False
Definition at line 1685 of file z3py.py.
1686 """Return `True` if `a` is a Z3 implication expression. 1688 >>> p, q = Bools('p q') 1689 >>> is_implies(Implies(p, q)) 1691 >>> is_implies(And(p, q)) ◆ is_int()Return `True` if `a` is an integer expression. >>> x = Int('x') >>> is_int(x + 1) True >>> is_int(1) False >>> is_int(IntVal(1)) True >>> y = Real('y') >>> is_int(y) False >>> is_int(y + 1) False
Definition at line 2736 of file z3py.py.
2737 """Return `True` if `a` is an integer expression. 2744 >>> is_int(IntVal(1)) ◆ is_int_value() def z3py.is_int_value ( a )Return `True` if `a` is an integer value of sort Int. >>> is_int_value(IntVal(1)) True >>> is_int_value(1) False >>> is_int_value(Int('x')) False >>> n = Int('x') + 1 >>> n x + 1 >>> n.arg(1) 1 >>> is_int_value(n.arg(1)) True >>> is_int_value(RealVal("1/3")) False >>> is_int_value(RealVal(1)) False
Definition at line 2782 of file z3py.py.
2783 """Return `True` if `a` is an integer value of sort Int. 2785 >>> is_int_value(IntVal(1)) 2789 >>> is_int_value(Int('x')) 2791 >>> n = Int('x') + 1 2796 >>> is_int_value(n.arg(1)) 2798 >>> is_int_value(RealVal("1/3")) 2800 >>> is_int_value(RealVal(1)) 2803 return is_arith(a)
anda.is_int()
and_is_numeral(a.ctx, a.as_ast())
◆ is_is_int()Return `True` if `a` is an expression of the form IsInt(b). >>> x = Real('x') >>> is_is_int(IsInt(x)) True >>> is_is_int(x) False
Definition at line 2967 of file z3py.py.
2968 """Return `True` if `a` is an expression of the form IsInt(b). 2971 >>> is_is_int(IsInt(x)) ◆ is_K()Return `True` if `a` is a Z3 constant array. >>> a = K(IntSort(), 10) >>> is_K(a) True >>> a = Array('a', IntSort(), IntSort()) >>> is_K(a) False
Definition at line 4684 of file z3py.py.
4685 """Return `True` if `a` is a Z3 constant array. 4687 >>> a = K(IntSort(), 10) 4690 >>> a = Array('a', IntSort(), IntSort()) ◆ is_le()Return `True` if `a` is an expression of the form b <= c. >>> x, y = Ints('x y') >>> is_le(x <= y) True >>> is_le(x < y) False
Definition at line 2919 of file z3py.py.
2920 """Return `True` if `a` is an expression of the form b <= c. 2922 >>> x, y = Ints('x y') ◆ is_lt()Return `True` if `a` is an expression of the form b < c. >>> x, y = Ints('x y') >>> is_lt(x < y) True >>> is_lt(x == y) False
Definition at line 2931 of file z3py.py.
2932 """Return `True` if `a` is an expression of the form b < c. 2934 >>> x, y = Ints('x y') ◆ is_map()Return `True` if `a` is a Z3 map array expression. >>> f = Function('f', IntSort(), IntSort()) >>> b = Array('b', IntSort(), IntSort()) >>> a = Map(f, b) >>> a Map(f, b) >>> is_map(a) True >>> is_map(b) False
Definition at line 4697 of file z3py.py.
4698 """Return `True` if `a` is a Z3 map array expression. 4700 >>> f = Function('f', IntSort(), IntSort()) 4701 >>> b = Array('b', IntSort(), IntSort())Referenced by get_map_func().
◆ is_mod()Return `True` if `a` is an expression of the form b % c. >>> x, y = Ints('x y') >>> is_mod(x % y) True >>> is_mod(x + y) False
Definition at line 2907 of file z3py.py.
2908 """Return `True` if `a` is an expression of the form b % c. 2910 >>> x, y = Ints('x y') ◆ is_mul()Return `True` if `a` is an expression of the form b * c. >>> x, y = Ints('x y') >>> is_mul(x * y) True >>> is_mul(x - y) False
Definition at line 2854 of file z3py.py.
2855 """Return `True` if `a` is an expression of the form b * c. 2857 >>> x, y = Ints('x y') ◆ is_not()Return `True` if `a` is a Z3 not expression. >>> p = Bool('p') >>> is_not(p) False >>> is_not(Not(p)) True
Definition at line 1697 of file z3py.py.
1698 """Return `True` if `a` is a Z3 not expression.Referenced by mk_not().
◆ is_or()Return `True` if `a` is a Z3 or expression. >>> p, q = Bools('p q') >>> is_or(Or(p, q)) True >>> is_or(And(p, q)) False
Definition at line 1673 of file z3py.py.
1674 """Return `True` if `a` is a Z3 or expression. 1676 >>> p, q = Bools('p q') 1679 >>> is_or(And(p, q)) ◆ is_pattern() def z3py.is_pattern ( a )Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation. >>> f = Function('f', IntSort(), IntSort()) >>> x = Int('x') >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ]) >>> q ForAll(x, f(x) == 0) >>> q.num_patterns() 1 >>> is_pattern(q.pattern(0)) True >>> q.pattern(0) f(Var(0))
Definition at line 1973 of file z3py.py.
1974 """Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation. 1976 >>> f = Function('f', IntSort(), IntSort()) 1978 >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ]) 1980 ForAll(x, f(x) == 0) 1981 >>> q.num_patterns() 1983 >>> is_pattern(q.pattern(0)) 1988 returnisinstance(a, PatternRef)
Referenced by is_quantifier(), and MultiPattern().
◆ is_probe()Return `True` if `p` is a Z3 probe. >>> is_probe(Int('x')) False >>> is_probe(Probe('memory')) True
Definition at line 8770 of file z3py.py.
8771 """Return `True` if `p` is a Z3 probe. 8773 >>> is_probe(Int('x')) 8775 >>> is_probe(Probe('memory')) 8778 returnisinstance(p, Probe)
Referenced by eq(), mk_not(), and Not().
◆ is_quantifier() def z3py.is_quantifier ( a )Return `True` if `a` is a Z3 quantifier. >>> f = Function('f', IntSort(), IntSort()) >>> x = Int('x') >>> q = ForAll(x, f(x) == 0) >>> is_quantifier(q) True >>> is_quantifier(f(x)) False
Definition at line 2223 of file z3py.py.
2224 """Return `True` if `a` is a Z3 quantifier. 2226 >>> f = Function('f', IntSort(), IntSort()) 2228 >>> q = ForAll(x, f(x) == 0) 2229 >>> is_quantifier(q) 2231 >>> is_quantifier(f(x)) 2234 returnisinstance(a, QuantifierRef)
◆ is_rational_value() def z3py.is_rational_value ( a )Return `True` if `a` is rational value of sort Real. >>> is_rational_value(RealVal(1)) True >>> is_rational_value(RealVal("3/5")) True >>> is_rational_value(IntVal(1)) False >>> is_rational_value(1) False >>> n = Real('x') + 1 >>> n.arg(1) 1 >>> is_rational_value(n.arg(1)) True >>> is_rational_value(Real('x')) False
Definition at line 2806 of file z3py.py.
2807 """Return `True` if `a` is rational value of sort Real. 2809 >>> is_rational_value(RealVal(1)) 2811 >>> is_rational_value(RealVal("3/5")) 2813 >>> is_rational_value(IntVal(1)) 2815 >>> is_rational_value(1) 2817 >>> n = Real('x') + 1 2820 >>> is_rational_value(n.arg(1)) 2822 >>> is_rational_value(Real('x')) 2825 return is_arith(a)
anda.is_real()
and_is_numeral(a.ctx, a.as_ast())
◆ is_re() ◆ is_real()Return `True` if `a` is a real expression. >>> x = Int('x') >>> is_real(x + 1) False >>> y = Real('y') >>> is_real(y) True >>> is_real(y + 1) True >>> is_real(1) False >>> is_real(RealVal(1)) True
Definition at line 2755 of file z3py.py.
2756 """Return `True` if `a` is a real expression. 2768 >>> is_real(RealVal(1)) 2771 return is_arith(a)
anda.is_real()
Referenced by fpRealToFP(), and fpToFP().
◆ is_select()Return `True` if `a` is a Z3 array select application. >>> a = Array('a', IntSort(), IntSort()) >>> is_select(a) False >>> i = Int('i') >>> is_select(a[i]) True
Definition at line 4932 of file z3py.py.
4933 """Return `True` if `a` is a Z3 array select application. 4935 >>> a = Array('a', IntSort(), IntSort()) ◆ is_seq()Return `True` if `a` is a Z3 sequence expression. >>> print (is_seq(Unit(IntVal(0)))) True >>> print (is_seq(StringVal("abc"))) True
Definition at line 11027 of file z3py.py.
11028 """Return `True` if `a` is a Z3 sequence expression. 11029 >>> print (is_seq(Unit(IntVal(0)))) 11031 >>> print (is_seq(StringVal("abc"))) 11034 returnisinstance(a, SeqRef)
Referenced by CharIsDigit(), Concat(), and Extract().
◆ is_sort()Return `True` if `s` is a Z3 sort. >>> is_sort(IntSort()) True >>> is_sort(Int('x')) False >>> is_expr(Int('x')) True
Definition at line 647 of file z3py.py.
648 """Return `True` if `s` is a Z3 sort. 650 >>> is_sort(IntSort()) 652 >>> is_sort(Int('x')) 654 >>> is_expr(Int('x')) 657 returnisinstance(s, SortRef)
Referenced by ArraySort(), CreateDatatypes(), FreshFunction(), Function(), IsSubset(), K(), PropagateFunction(), prove(), RecFunction(), and Var().
◆ is_store()Return `True` if `a` is a Z3 array store application. >>> a = Array('a', IntSort(), IntSort()) >>> is_store(a) False >>> is_store(Store(a, 0, 1)) True
Definition at line 4945 of file z3py.py.
4946 """Return `True` if `a` is a Z3 array store application. 4948 >>> a = Array('a', IntSort(), IntSort()) 4951 >>> is_store(Store(a, 0, 1)) ◆ is_string()Return `True` if `a` is a Z3 string expression. >>> print (is_string(StringVal("ab"))) True
Definition at line 11037 of file z3py.py.
11038 """Return `True` if `a` is a Z3 string expression. 11039 >>> print (is_string(StringVal("ab"))) 11042 returnisinstance(a, SeqRef)
anda.is_string()
◆ is_string_value() def z3py.is_string_value ( a )return 'True' if 'a' is a Z3 string constant expression. >>> print (is_string_value(StringVal("a"))) True >>> print (is_string_value(StringVal("a") + StringVal("b"))) False
Definition at line 11045 of file z3py.py.
11046 """return 'True' if 'a' is a Z3 string constant expression. 11047 >>> print (is_string_value(StringVal("a"))) 11049 >>> print (is_string_value(StringVal("a") + StringVal("b"))) 11052 returnisinstance(a, SeqRef)
anda.is_string_value()
◆ is_sub()Return `True` if `a` is an expression of the form b - c. >>> x, y = Ints('x y') >>> is_sub(x - y) True >>> is_sub(x + y) False
Definition at line 2866 of file z3py.py.
2867 """Return `True` if `a` is an expression of the form b - c. 2869 >>> x, y = Ints('x y') ◆ is_to_int()Return `True` if `a` is an expression of the form ToInt(b). >>> x = Real('x') >>> n = ToInt(x) >>> n ToInt(x) >>> is_to_int(n) True >>> is_to_int(x) False
Definition at line 2994 of file z3py.py.
2995 """Return `True` if `a` is an expression of the form ToInt(b). ◆ is_to_real() def z3py.is_to_real ( a )Return `True` if `a` is an expression of the form ToReal(b). >>> x = Int('x') >>> n = ToReal(x) >>> n ToReal(x) >>> is_to_real(n) True >>> is_to_real(x) False
Definition at line 2979 of file z3py.py.
2980 """Return `True` if `a` is an expression of the form ToReal(b). ◆ is_true()Return `True` if `a` is the Z3 true expression. >>> p = Bool('p') >>> is_true(p) False >>> is_true(simplify(p == p)) True >>> x = Real('x') >>> is_true(x == 0) False >>> # True is a Python Boolean expression >>> is_true(True) False
Definition at line 1629 of file z3py.py.
1630 """Return `True` if `a` is the Z3 true expression. 1635 >>> is_true(simplify(p == p)) 1640 >>> # True is a Python Boolean expressionReferenced by AstRef.__bool__().
◆ is_var()Return `True` if `a` is variable. Z3 uses de-Bruijn indices for representing bound variables in quantifiers. >>> x = Int('x') >>> is_var(x) False >>> is_const(x) True >>> f = Function('f', IntSort(), IntSort()) >>> # Z3 replaces x with bound variables when ForAll is executed. >>> q = ForAll(x, f(x) == x) >>> b = q.body() >>> b f(Var(0)) == Var(0) >>> b.arg(1) Var(0) >>> is_var(b.arg(1)) True
Definition at line 1328 of file z3py.py.
1329 """Return `True` if `a` is variable. 1331 Z3 uses de-Bruijn indices for representing bound variables in 1339 >>> f = Function('f', IntSort(), IntSort()) 1340 >>> # Z3 replaces x with bound variables when ForAll is executed. 1341 >>> q = ForAll(x, f(x) == x) 1347 >>> is_var(b.arg(1)) 1350 return is_expr(a)
and_ast_kind(a.ctx, a) == Z3_VAR_AST
Referenced by get_var_index().
◆ IsInt()Return the Z3 predicate IsInt(a). >>> x = Real('x') >>> IsInt(x + "1/2") IsInt(x + 1/2) >>> solve(IsInt(x + "1/2"), x > 0, x < 1) [x = 1/2] >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2") no solution
Definition at line 3440 of file z3py.py.
3441 """ Return the Z3 predicate IsInt(a). 3444 >>> IsInt(x + "1/2") 3446 >>> solve(IsInt(x + "1/2"), x > 0, x < 1) 3448 >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2") 3452_z3_assert(a.is_real(),
"Z3 real expression expected.")
3454 returnBoolRef(
Z3_mk_is_int(ctx.ref(), a.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.
◆ IsMember() def z3py.IsMember ( e, s )Check if e is a member of set s >>> a = Const('a', SetSort(IntSort())) >>> IsMember(1, a) a[1]
Definition at line 5055 of file z3py.py.
5056 """ Check if e is a member of set s 5057 >>> a = Const('a', SetSort(IntSort())) 5061ctx = _ctx_from_ast_arg_list([s, e])
5062e = _py2expr(e, ctx)
Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)
Check for set membership.
◆ IsSubset() def z3py.IsSubset ( a, b )Check if a is a subset of b >>> a = Const('a', SetSort(IntSort())) >>> b = Const('b', SetSort(IntSort())) >>> IsSubset(a, b) subset(a, b)
Definition at line 5066 of file z3py.py.
5067 """ Check if a is a subset of b 5068 >>> a = Const('a', SetSort(IntSort())) 5069 >>> b = Const('b', SetSort(IntSort())) 5073ctx = _ctx_from_ast_arg_list([a, b])
Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Check for subsetness of sets.
◆ K()Return a Z3 constant array expression. >>> a = K(IntSort(), 10) >>> a K(Int, 10) >>> a.sort() Array(Int, Int) >>> i = Int('i') >>> a[i] K(Int, 10)[i] >>> simplify(a[i]) 10
Definition at line 4892 of file z3py.py.
4893 """Return a Z3 constant array expression. 4895 >>> a = K(IntSort(), 10) 4907_z3_assert(
is_sort(dom),
"Z3 sort expected")
4910v = _py2expr(v, ctx)
Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)
Create the constant array.
Referenced by ModelRef.get_interp().
◆ Lambda() def z3py.Lambda ( vs, body )Create a Z3 lambda expression. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> mem0 = Array('mem0', IntSort(), IntSort()) >>> lo, hi, e, i = Ints('lo hi e i') >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i])) >>> mem1 Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
Definition at line 2311 of file z3py.py.
2312 """Create a Z3 lambda expression. 2314 >>> f = Function('f', IntSort(), IntSort(), IntSort()) 2315 >>> mem0 = Array('mem0', IntSort(), IntSort()) 2316 >>> lo, hi, e, i = Ints('lo hi e i') 2317 >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i])) 2319 Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i])) 2325_vs = (Ast * num_vars)()
2326 fori
in range(num_vars):
2328_vs[i] = vs[i].as_ast()
2329 returnQuantifierRef(
Z3_mk_lambda_const(ctx.ref(), num_vars, _vs, body.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)
Create a lambda expression using a list of constants that form the set of bound variables.
Referenced by Context.MkLambda().
◆ LastIndexOf() def z3py.LastIndexOf ( s, substr )Retrieve the last index of substring within a string
Definition at line 11212 of file z3py.py.
11213 """Retrieve the last index of substring within a string""" 11215ctx = _get_ctx2(s, substr, ctx)
11216s = _coerce_seq(s, ctx)
11217substr = _coerce_seq(substr, ctx)
Z3_ast Z3_API Z3_mk_seq_last_index(Z3_context c, Z3_ast s, Z3_ast substr)
Return index of the last occurrence of substr in s. If s does not contain substr, then the value is -...
def LastIndexOf(s, substr)
◆ Length() ◆ LinearOrder() def z3py.LinearOrder ( a, index )Definition at line 11483 of file z3py.py.
Z3_func_decl Z3_API Z3_mk_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a linear ordering relation over signature a. The relation is identified by the index id.
def LinearOrder(a, index)
◆ Loop() def z3py.Loop ( re, lo, hi =0
)
Create the regular expression accepting between a lower and upper bound repetitions >>> re = Loop(Re("a"), 1, 3) >>> print(simplify(InRe("aa", re))) True >>> print(simplify(InRe("aaaa", re))) False >>> print(simplify(InRe("", re))) False
Definition at line 11433 of file z3py.py.
11433 def Loop(re, lo, hi=0):
11434 """Create the regular expression accepting between a lower and upper bound repetitions 11435 >>> re = Loop(Re("a"), 1, 3) 11436 >>> print(simplify(InRe("aa", re))) 11438 >>> print(simplify(InRe("aaaa", re))) 11440 >>> print(simplify(InRe("", re))) 11444_z3_assert(
is_expr(re),
"expression expected")
11445 returnReRef(
Z3_mk_re_loop(re.ctx_ref(), re.as_ast(), lo, hi), re.ctx)
Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi)
Create a regular expression loop. The supplied regular expression r is repeated between lo and hi tim...
◆ LShR()Create the Z3 expression logical right shift. Use the operator >> for the arithmetical right shift. >>> x, y = BitVecs('x y', 32) >>> LShR(x, y) LShR(x, y) >>> (x >> y).sexpr() '(bvashr x y)' >>> LShR(x, y).sexpr() '(bvlshr x y)' >>> BitVecVal(4, 3) 4 >>> BitVecVal(4, 3).as_signed_long() -4 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long() -2 >>> simplify(BitVecVal(4, 3) >> 1) 6 >>> simplify(LShR(BitVecVal(4, 3), 1)) 2 >>> simplify(BitVecVal(2, 3) >> 1) 1 >>> simplify(LShR(BitVecVal(2, 3), 1)) 1
Definition at line 4345 of file z3py.py.
4346 """Create the Z3 expression logical right shift. 4348 Use the operator >> for the arithmetical right shift. 4350 >>> x, y = BitVecs('x y', 32) 4353 >>> (x >> y).sexpr() 4355 >>> LShR(x, y).sexpr() 4359 >>> BitVecVal(4, 3).as_signed_long() 4361 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long() 4363 >>> simplify(BitVecVal(4, 3) >> 1) 4365 >>> simplify(LShR(BitVecVal(4, 3), 1)) 4367 >>> simplify(BitVecVal(2, 3) >> 1) 4369 >>> simplify(LShR(BitVecVal(2, 3), 1)) 4372_check_bv_args(a, b)
4373a, b = _coerce_exprs(a, b)
4374 returnBitVecRef(
Z3_mk_bvlshr(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)
Logical shift right.
◆ main_ctx()Return a reference to the global Z3 context. >>> x = Real('x') >>> x.ctx == main_ctx() True >>> c = Context() >>> c == main_ctx() False >>> x2 = Real('x', c) >>> x2.ctx == c True >>> eq(x, x2) False
Definition at line 239 of file z3py.py.
240 """Return a reference to the global Z3 context. 243 >>> x.ctx == main_ctx() 248 >>> x2 = Real('x', c) 255 if_main_ctx
is None:
256_main_ctx = Context()
Referenced by CharIsDigit(), help_simplify(), and simplify_param_descrs().
◆ Map() def z3py.Map ( f, * args )Return a Z3 map array expression. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> a1 = Array('a1', IntSort(), IntSort()) >>> a2 = Array('a2', IntSort(), IntSort()) >>> b = Map(f, a1, a2) >>> b Map(f, a1, a2) >>> prove(b[0] == f(a1[0], a2[0])) proved
Definition at line 4869 of file z3py.py.
4870 """Return a Z3 map array expression. 4872 >>> f = Function('f', IntSort(), IntSort(), IntSort()) 4873 >>> a1 = Array('a1', IntSort(), IntSort()) 4874 >>> a2 = Array('a2', IntSort(), IntSort()) 4875 >>> b = Map(f, a1, a2) 4878 >>> prove(b[0] == f(a1[0], a2[0])) 4881args = _get_args(args)
4883_z3_assert(len(args) > 0,
"At least one Z3 array expression expected")
4884_z3_assert(
is_func_decl(f),
"First argument must be a Z3 function declaration")
4885_z3_assert(all([
is_array(a)
fora
inargs]),
"Z3 array expected expected")
4886_z3_assert(len(args) == f.arity(),
"Number of arguments mismatch")
4887_args, sz = _to_ast_array(args)
4889 returnArrayRef(
Z3_mk_map(ctx.ref(), f.ast, sz, _args), ctx)
Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const *args)
Map f on the argument arrays.
Referenced by Context.Context().
◆ mk_not() ◆ Model() def z3py.Model ( ctx =None
) ◆ MultiPattern() def z3py.MultiPattern ( * args )
Create a Z3 multi-pattern using the given expressions `*args` >>> f = Function('f', IntSort(), IntSort()) >>> g = Function('g', IntSort(), IntSort()) >>> x = Int('x') >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ]) >>> q ForAll(x, f(x) != g(x)) >>> q.num_patterns() 1 >>> is_pattern(q.pattern(0)) True >>> q.pattern(0) MultiPattern(f(Var(0)), g(Var(0)))
Definition at line 1991 of file z3py.py.
1992 """Create a Z3 multi-pattern using the given expressions `*args` 1994 >>> f = Function('f', IntSort(), IntSort()) 1995 >>> g = Function('g', IntSort(), IntSort()) 1997 >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ]) 1999 ForAll(x, f(x) != g(x)) 2000 >>> q.num_patterns() 2002 >>> is_pattern(q.pattern(0)) 2005 MultiPattern(f(Var(0)), g(Var(0))) 2008_z3_assert(len(args) > 0,
"At least one argument expected")
2009_z3_assert(all([
is_expr(a)
fora
inargs]),
"Z3 expressions expected")
2011args, sz = _to_ast_array(args)
2012 returnPatternRef(
Z3_mk_pattern(ctx.ref(), sz, args), ctx)
Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[])
Create a pattern for quantifier instantiation.
◆ Not() def z3py.Not ( a, ctx =None
)
Create a Z3 not expression or probe. >>> p = Bool('p') >>> Not(Not(p)) Not(Not(p)) >>> simplify(Not(Not(p))) p
Definition at line 1855 of file z3py.py.
1855 def Not(a, ctx=None):
1856 """Create a Z3 not expression or probe. 1861 >>> simplify(Not(Not(p))) 1864ctx = _get_ctx(_ctx_from_ast_arg_list([a], ctx))
1871 returnBoolRef(
Z3_mk_not(ctx.ref(), a.as_ast()), ctx)
Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)
Return a probe that evaluates to "true" when p does not evaluate to true.
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).
Referenced by BoolRef.__invert__(), fpNEQ(), mk_not(), and prove().
◆ on_clause_eh() def z3py.on_clause_eh ( ctx, p, n, dep, clause )Definition at line 11523 of file z3py.py.
11524onc = _my_hacky_class
11525p = _to_expr_ref(
to_Ast(p), onc.ctx)
11527deps = [dep[i]
fori
in range(n)]
11528onc.on_clause(p, deps, clause)
def on_clause_eh(ctx, p, n, dep, clause)
Referenced by on_clause.on_clause().
◆ open_log() def z3py.open_log ( fname )Log interaction to a file. This function must be invoked immediately after init().
Definition at line 114 of file z3py.py.
115 """Log interaction to a file. This function must be invoked immediately after init(). """bool Z3_API Z3_open_log(Z3_string filename)
Log interaction to a file.
◆ Option()Create the regular expression that optionally accepts the argument. >>> re = Option(Re("a")) >>> print(simplify(InRe("a", re))) True >>> print(simplify(InRe("", re))) True >>> print(simplify(InRe("aa", re))) False
Definition at line 11398 of file z3py.py.
11399 """Create the regular expression that optionally accepts the argument. 11400 >>> re = Option(Re("a")) 11401 >>> print(simplify(InRe("a", re))) 11403 >>> print(simplify(InRe("", re))) 11405 >>> print(simplify(InRe("aa", re))) 11409_z3_assert(
is_expr(re),
"expression expected")
Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re)
Create the regular language [re].
◆ Or()Create a Z3 or-expression or or-probe. >>> p, q, r = Bools('p q r') >>> Or(p, q, r) Or(p, q, r) >>> P = BoolVector('p', 5) >>> Or(P) Or(p__0, p__1, p__2, p__3, p__4)
Definition at line 1922 of file z3py.py.
1923 """Create a Z3 or-expression or or-probe. 1925 >>> p, q, r = Bools('p q r') 1928 >>> P = BoolVector('p', 5) 1930 Or(p__0, p__1, p__2, p__3, p__4) 1934last_arg = args[len(args) - 1]
1935 ifisinstance(last_arg, Context):
1936ctx = args[len(args) - 1]
1937args = args[:len(args) - 1]
1938 eliflen(args) == 1
andisinstance(args[0], AstVector):
1940args = [a
fora
inargs[0]]
1943args = _get_args(args)
1944ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
1946_z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression or probe")
1947 if_has_probe(args):
1948 return_probe_or(args, ctx)
1950args = _coerce_expr_list(args, ctx)
1951_args, sz = _to_ast_array(args)
1952 returnBoolRef(
Z3_mk_or(ctx.ref(), sz, _args), ctx)
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].
Referenced by BoolRef.__or__(), and ApplyResult.as_expr().
◆ OrElse() def z3py.OrElse ( * ts, ** ks )Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail). >>> x = Int('x') >>> t = OrElse(Tactic('split-clause'), Tactic('skip')) >>> # Tactic split-clause fails if there is no clause in the given goal. >>> t(x == 0) [[x == 0]] >>> t(Or(x == 0, x == 1)) [[x == 0], [x == 1]]
Definition at line 8463 of file z3py.py.
8464 """Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail). 8467 >>> t = OrElse(Tactic('split-clause'), Tactic('skip')) 8468 >>> # Tactic split-clause fails if there is no clause in the given goal. 8471 >>> t(Or(x == 0, x == 1)) 8472 [[x == 0], [x == 1]] 8475_z3_assert(len(ts) >= 2,
"At least two arguments expected")
8476ctx = ks.get(
"ctx",
None)
8479 fori
in range(num - 1):
8480r = _or_else(r, ts[i + 1], ctx)
◆ ParAndThen() def z3py.ParAndThen ( t1, t2, ctx =None
)
Alias for ParThen(t1, t2, ctx).
Definition at line 8519 of file z3py.py.
8520 """Alias for ParThen(t1, t2, ctx)."""def ParThen(t1, t2, ctx=None)
def ParAndThen(t1, t2, ctx=None)
◆ ParOr() def z3py.ParOr ( * ts, ** ks )Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail). >>> x = Int('x') >>> t = ParOr(Tactic('simplify'), Tactic('fail')) >>> t(x + 1 == 2) [[x == 1]]
Definition at line 8484 of file z3py.py.
8484 def ParOr(*ts, **ks):
8485 """Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail). 8488 >>> t = ParOr(Tactic('simplify'), Tactic('fail')) 8493_z3_assert(len(ts) >= 2,
"At least two arguments expected")
8494ctx = _get_ctx(ks.get(
"ctx",
None))
8495ts = [_to_tactic(t, ctx)
fort
ints]
8497_args = (TacticObj * sz)()
8498 fori
in range(sz):
8499_args[i] = ts[i].tactic
Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[])
Return a tactic that applies the given tactics in parallel.
◆ parse_smt2_file() def z3py.parse_smt2_file ( f, sorts ={}
, decls = {}
, ctx = None
)
Parse a file in SMT 2.0 format using the given sorts and decls. This function is similar to parse_smt2_string().
Definition at line 9399 of file z3py.py.
9400 """Parse a file in SMT 2.0 format using the given sorts and decls. 9402 This function is similar to parse_smt2_string(). 9405ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9406dsz, dnames, ddecls = _dict2darray(decls, ctx)
9407 returnAstVector(
Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
Z3_ast_vector Z3_API Z3_parse_smtlib2_file(Z3_context c, Z3_string file_name, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
Similar to Z3_parse_smtlib2_string, but reads the benchmark from a file.
def parse_smt2_file(f, sorts={}, decls={}, ctx=None)
◆ parse_smt2_string() def z3py.parse_smt2_string ( s, sorts ={}
, decls = {}
, ctx = None
)
Parse a string in SMT 2.0 format using the given sorts and decls. The arguments sorts and decls are Python dictionaries used to initialize the symbol table used for the SMT 2.0 parser. >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))') [x > 0, x < 10] >>> x, y = Ints('x y') >>> f = Function('f', IntSort(), IntSort()) >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f}) [x + f(y) > 0] >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() }) [a > 0]
Definition at line 9378 of file z3py.py.
9379 """Parse a string in SMT 2.0 format using the given sorts and decls. 9381 The arguments sorts and decls are Python dictionaries used to initialize 9382 the symbol table used for the SMT 2.0 parser. 9384 >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))') 9386 >>> x, y = Ints('x y') 9387 >>> f = Function('f', IntSort(), IntSort()) 9388 >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f}) 9390 >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() }) 9394ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9395dsz, dnames, ddecls = _dict2darray(decls, ctx)
Z3_ast_vector Z3_API Z3_parse_smtlib2_string(Z3_context c, Z3_string str, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
Parse the given string using the SMT-LIB2 parser.
def parse_smt2_string(s, sorts={}, decls={}, ctx=None)
◆ ParThen() def z3py.ParThen ( t1, t2, ctx =None
)
Return a tactic that applies t1 and then t2 to every subgoal produced by t1. The subgoals are processed in parallel. >>> x, y = Ints('x y') >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values')) >>> t(And(Or(x == 1, x == 2), y == x + 1)) [[x == 1, y == 2], [x == 2, y == 3]]
Definition at line 8503 of file z3py.py.
8503 def ParThen(t1, t2, ctx=None):
8504 """Return a tactic that applies t1 and then t2 to every subgoal produced by t1. 8505 The subgoals are processed in parallel. 8507 >>> x, y = Ints('x y') 8508 >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values')) 8509 >>> t(And(Or(x == 1, x == 2), y == x + 1)) 8510 [[x == 1, y == 2], [x == 2, y == 3]] 8512t1 = _to_tactic(t1, ctx)
8513t2 = _to_tactic(t2, ctx)
8515_z3_assert(t1.ctx == t2.ctx,
"Context mismatch")
Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal and then t2 to every subgoal produced by t1....
Referenced by ParAndThen().
◆ PartialOrder() def z3py.PartialOrder ( a, index )Definition at line 11479 of file z3py.py.
Z3_func_decl Z3_API Z3_mk_partial_order(Z3_context c, Z3_sort a, unsigned id)
create a partial ordering relation over signature a and index id.
def PartialOrder(a, index)
◆ PbEq() def z3py.PbEq ( args, k, ctx =None
)
Create a Pseudo-Boolean equality k constraint. >>> a, b, c = Bools('a b c') >>> f = PbEq(((a,1),(b,3),(c,2)), 3)
Definition at line 9155 of file z3py.py.
9155 def PbEq(args, k, ctx=None):
9156 """Create a Pseudo-Boolean equality k constraint. 9158 >>> a, b, c = Bools('a b c') 9159 >>> f = PbEq(((a,1),(b,3),(c,2)), 3) 9161_z3_check_cint_overflow(k,
"k")
9162ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9163 returnBoolRef(
Z3_mk_pbeq(ctx.ref(), sz, _args, _coeffs, k), ctx)
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.
def PbEq(args, k, ctx=None)
◆ PbGe() def z3py.PbGe ( args, k )Create a Pseudo-Boolean inequality k constraint. >>> a, b, c = Bools('a b c') >>> f = PbGe(((a,1),(b,3),(c,2)), 3)
Definition at line 9144 of file z3py.py.
9145 """Create a Pseudo-Boolean inequality k constraint. 9147 >>> a, b, c = Bools('a b c') 9148 >>> f = PbGe(((a,1),(b,3),(c,2)), 3) 9150_z3_check_cint_overflow(k,
"k")
9151ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9152 returnBoolRef(
Z3_mk_pbge(ctx.ref(), sz, _args, _coeffs, k), ctx)
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.
◆ PbLe() def z3py.PbLe ( args, k )Create a Pseudo-Boolean inequality k constraint. >>> a, b, c = Bools('a b c') >>> f = PbLe(((a,1),(b,3),(c,2)), 3)
Definition at line 9133 of file z3py.py.
9134 """Create a Pseudo-Boolean inequality k constraint. 9136 >>> a, b, c = Bools('a b c') 9137 >>> f = PbLe(((a,1),(b,3),(c,2)), 3) 9139_z3_check_cint_overflow(k,
"k")
9140ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9141 returnBoolRef(
Z3_mk_pble(ctx.ref(), sz, _args, _coeffs, k), ctx)
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.
◆ PiecewiseLinearOrder() def z3py.PiecewiseLinearOrder ( a, index )Definition at line 11491 of file z3py.py.
Z3_func_decl Z3_API Z3_mk_piecewise_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a piecewise linear ordering relation over signature a and index id.
def PiecewiseLinearOrder(a, index)
◆ Plus()Create the regular expression accepting one or more repetitions of argument. >>> re = Plus(Re("a")) >>> print(simplify(InRe("aa", re))) True >>> print(simplify(InRe("ab", re))) False >>> print(simplify(InRe("", re))) False
Definition at line 11383 of file z3py.py.
11384 """Create the regular expression accepting one or more repetitions of argument. 11385 >>> re = Plus(Re("a")) 11386 >>> print(simplify(InRe("aa", re))) 11388 >>> print(simplify(InRe("ab", re))) 11390 >>> print(simplify(InRe("", re))) 11394_z3_assert(
is_expr(re),
"expression expected")
11395 returnReRef(
Z3_mk_re_plus(re.ctx_ref(), re.as_ast()), re.ctx)
Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re)
Create the regular language re+.
◆ PrefixOf() def z3py.PrefixOf ( a, b )Check if 'a' is a prefix of 'b' >>> s1 = PrefixOf("ab", "abc") >>> simplify(s1) True >>> s2 = PrefixOf("bc", "abc") >>> simplify(s2) False
Definition at line 11128 of file z3py.py.
11129 """Check if 'a' is a prefix of 'b' 11130 >>> s1 = PrefixOf("ab", "abc") 11133 >>> s2 = PrefixOf("bc", "abc") 11137ctx = _get_ctx2(a, b)
11138a = _coerce_seq(a, ctx)
11139b = _coerce_seq(b, ctx)
11140 returnBoolRef(
Z3_mk_seq_prefix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s)
Check if prefix is a prefix of s.
◆ probe_description() def z3py.probe_description ( name, ctx =None
)
Return a short description for the probe named `name`. >>> d = probe_description('memory')
Definition at line 8799 of file z3py.py.
8800 """Return a short description for the probe named `name`. 8802 >>> d = probe_description('memory')Z3_string Z3_API Z3_probe_get_descr(Z3_context c, Z3_string name)
Return a string containing a description of the probe with the given name.
Referenced by describe_probes().
◆ probes() def z3py.probes ( ctx =None
)
Return a list of all available probes in Z3. >>> l = probes() >>> l.count('memory') == 1 True
Definition at line 8788 of file z3py.py.
8789 """Return a list of all available probes in Z3. 8792 >>> l.count('memory') == 1unsigned Z3_API Z3_get_num_probes(Z3_context c)
Return the number of builtin probes available in Z3.
Z3_string Z3_API Z3_get_probe_name(Z3_context c, unsigned i)
Return the name of the i probe.
Referenced by describe_probes().
◆ Product() def z3py.Product ( * args )Create the product of the Z3 expressions. >>> a, b, c = Ints('a b c') >>> Product(a, b, c) a*b*c >>> Product([a, b, c]) a*b*c >>> A = IntVector('a', 5) >>> Product(A) a__0*a__1*a__2*a__3*a__4
Definition at line 9040 of file z3py.py.
9041 """Create the product of the Z3 expressions. 9043 >>> a, b, c = Ints('a b c') 9044 >>> Product(a, b, c) 9046 >>> Product([a, b, c]) 9048 >>> A = IntVector('a', 5) 9050 a__0*a__1*a__2*a__3*a__4 9052args = _get_args(args)
9055ctx = _ctx_from_ast_arg_list(args)
9057 return_reduce(
lambdaa, b: a * b, args, 1)
9058args = _coerce_expr_list(args, ctx)
9060 return_reduce(
lambdaa, b: a * b, args, 1)
9062_args, sz = _to_ast_array(args)
9063 returnArithRef(
Z3_mk_mul(ctx.ref(), sz, _args), ctx)
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].
◆ PropagateFunction() def z3py.PropagateFunction ( name, * sig )Create a function that gets tracked by user propagator. Every term headed by this function symbol is tracked. If a term is fixed and the fixed callback is registered a callback is invoked that the term headed by this function is fixed.
Definition at line 11677 of file z3py.py.
11678 """Create a function that gets tracked by user propagator. 11679 Every term headed by this function symbol is tracked. 11680 If a term is fixed and the fixed callback is registered a 11681 callback is invoked that the term headed by this function is fixed. 11683sig = _get_args(sig)
11685_z3_assert(len(sig) > 0,
"At least two arguments expected")
11686arity = len(sig) - 1
11689_z3_assert(
is_sort(rng),
"Z3 sort expected")
11690dom = (Sort * arity)()
11691 fori
in range(arity):
11693_z3_assert(
is_sort(sig[i]),
"Z3 sort expected")
11694dom[i] = sig[i].ast
Z3_func_decl Z3_API Z3_solver_propagate_declare(Z3_context c, Z3_symbol name, unsigned n, Z3_sort *domain, Z3_sort range)
def PropagateFunction(name, *sig)
◆ prove() def z3py.prove ( claim, show =False
, ** keywords )
Try to prove the given claim. This is a simple function for creating demonstrations. It tries to prove `claim` by showing the negation is unsatisfiable. >>> p, q = Bools('p q') >>> prove(Not(And(p, q)) == Or(Not(p), Not(q))) proved
Definition at line 9227 of file z3py.py.
9227 def prove(claim, show=False, **keywords):
9228 """Try to prove the given claim. 9230 This is a simple function for creating demonstrations. It tries to prove 9231 `claim` by showing the negation is unsatisfiable. 9233 >>> p, q = Bools('p q') 9234 >>> prove(Not(And(p, q)) == Or(Not(p), Not(q))) 9238_z3_assert(
is_bool(claim),
"Z3 Boolean expression expected")
9248print(
"failed to prove")
9251print(
"counterexample")
def prove(claim, show=False, **keywords)
◆ Q() def z3py.Q ( a, b, ctx =None
)
Return a Z3 rational a/b. If `ctx=None`, then the global context is used. >>> Q(3,5) 3/5 >>> Q(3,5).sort() Real
Definition at line 3281 of file z3py.py.
3281 def Q(a, b, ctx=None):
3282 """Return a Z3 rational a/b. 3284 If `ctx=None`, then the global context is used.def simplify(a, *arguments, **keywords)
Utils.
def RatVal(a, b, ctx=None)
◆ Range() def z3py.Range ( lo, hi, ctx =None
)
Create the range regular expression over two sequences of length 1 >>> range = Range("a","z") >>> print(simplify(InRe("b", range))) True >>> print(simplify(InRe("bb", range))) False
Definition at line 11448 of file z3py.py.
11448 def Range(lo, hi, ctx=None):
11449 """Create the range regular expression over two sequences of length 1 11450 >>> range = Range("a","z") 11451 >>> print(simplify(InRe("b", range))) 11453 >>> print(simplify(InRe("bb", range))) 11456lo = _coerce_seq(lo, ctx)
11457hi = _coerce_seq(hi, ctx)
11459_z3_assert(
is_expr(lo),
"expression expected")
11460_z3_assert(
is_expr(hi),
"expression expected")
11461 returnReRef(
Z3_mk_re_range(lo.ctx_ref(), lo.ast, hi.ast), lo.ctx)
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.
def Range(lo, hi, ctx=None)
◆ RatVal() def z3py.RatVal ( a, b, ctx =None
)
Return a Z3 rational a/b. If `ctx=None`, then the global context is used. >>> RatVal(3,5) 3/5 >>> RatVal(3,5).sort() Real
Definition at line 3265 of file z3py.py.
3265 def RatVal(a, b, ctx=None):
3266 """Return a Z3 rational a/b. 3268 If `ctx=None`, then the global context is used. 3272 >>> RatVal(3,5).sort() 3276_z3_assert(_is_int(a)
orisinstance(a, str),
"First argument cannot be converted into an integer")
3277_z3_assert(_is_int(b)
orisinstance(b, str),
"Second argument cannot be converted into an integer")
Referenced by Q().
◆ Re() def z3py.Re ( s, ctx =None
)
The regular expression that accepts sequence 's' >>> s1 = Re("ab") >>> s2 = Re(StringVal("ab")) >>> s3 = Re(Unit(BoolVal(True)))
Definition at line 11292 of file z3py.py.
11292 def Re(s, ctx=None):
11293 """The regular expression that accepts sequence 's' 11295 >>> s2 = Re(StringVal("ab")) 11296 >>> s3 = Re(Unit(BoolVal(True))) 11298s = _coerce_seq(s, ctx)
Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq)
Create a regular expression that accepts the sequence seq.
◆ Real() def z3py.Real ( name, ctx =None
)
Return a real constant named `name`. If `ctx=None`, then the global context is used. >>> x = Real('x') >>> is_real(x) True >>> is_real(x + 1) True
Definition at line 3347 of file z3py.py.
3347 def Real(name, ctx=None):
3348 """Return a real constant named `name`. If `ctx=None`, then the global context is used.Referenced by Reals(), and RealVector().
◆ Reals() def z3py.Reals ( names, ctx =None
)
Return a tuple of real constants. >>> x, y, z = Reals('x y z') >>> Sum(x, y, z) x + y + z >>> Sum(x, y, z).sort() Real
Definition at line 3360 of file z3py.py.
3360 def Reals(names, ctx=None):
3361 """Return a tuple of real constants. 3363 >>> x, y, z = Reals('x y z') 3366 >>> Sum(x, y, z).sort() 3370 ifisinstance(names, str):
3371names = names.split(
" ")
3372 return[
Real(name, ctx)
forname
innames]
def Reals(names, ctx=None)
◆ RealSort() def z3py.RealSort ( ctx =None
)
Return the real sort in the given context. If `ctx=None`, then the global context is used. >>> RealSort() Real >>> x = Const('x', RealSort()) >>> is_real(x) True >>> is_int(x) False >>> x.sort() == RealSort() True
Definition at line 3205 of file z3py.py.
3206 """Return the real sort in the given context. If `ctx=None`, then the global context is used. 3210 >>> x = Const('x', RealSort()) 3215 >>> x.sort() == RealSort()Z3_sort Z3_API Z3_mk_real_sort(Z3_context c)
Create the real type.
Referenced by FreshReal(), Context.getRealSort(), Context.mkRealSort(), Real(), RealVal(), and RealVar().
◆ RealVal() def z3py.RealVal ( val, ctx =None
)
Return a Z3 real value. `val` may be a Python int, long, float or string representing a number in decimal or rational notation. If `ctx=None`, then the global context is used. >>> RealVal(1) 1 >>> RealVal(1).sort() Real >>> RealVal("3/5") 3/5 >>> RealVal("1.5") 3/2
Definition at line 3246 of file z3py.py.
3247 """Return a Z3 real value. 3249 `val` may be a Python int, long, float or string representing a number in decimal or rational notation. 3250 If `ctx=None`, then the global context is used. 3254 >>> RealVal(1).sort()Referenced by Cbrt(), deserialize(), AlgebraicNumRef.index(), RatVal(), and Sqrt().
◆ RealVar() def z3py.RealVar ( idx, ctx =None
)
Create a real free variable. Free variables are used to create quantified formulas. They are also used to create polynomials. >>> RealVar(0) Var(0)
Definition at line 1503 of file z3py.py.
1505 Create a real free variable. Free variables are used to create quantified formulas. 1506 They are also used to create polynomials.def RealVar(idx, ctx=None)
Referenced by RealVarVector().
◆ RealVarVector() def z3py.RealVarVector ( n, ctx =None
)
Create a list of Real free variables. The variables have ids: 0, 1, ..., n-1 >>> x0, x1, x2, x3 = RealVarVector(4) >>> x2 Var(2)
Definition at line 1514 of file z3py.py.
1516 Create a list of Real free variables. 1517 The variables have ids: 0, 1, ..., n-1 1519 >>> x0, x1, x2, x3 = RealVarVector(4)def RealVarVector(n, ctx=None)
◆ RealVector() def z3py.RealVector ( prefix, sz, ctx =None
)
Return a list of real constants of size `sz`. >>> X = RealVector('x', 3) >>> X [x__0, x__1, x__2] >>> Sum(X) x__0 + x__1 + x__2 >>> Sum(X).sort() Real
Definition at line 3375 of file z3py.py.
3376 """Return a list of real constants of size `sz`. 3378 >>> X = RealVector('x', 3) 3387 return[
Real(
"%s__%s"% (prefix, i), ctx)
fori
in range(sz)]
def RealVector(prefix, sz, ctx=None)
◆ RecAddDefinition() def z3py.RecAddDefinition ( f, args, body )Set the body of a recursive function. Recursive definitions can be simplified if they are applied to ground arguments. >>> ctx = Context() >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx)) >>> n = Int('n', ctx) >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1))) >>> simplify(fac(5)) 120 >>> s = Solver(ctx=ctx) >>> s.add(fac(n) < 3) >>> s.check() sat >>> s.model().eval(fac(5)) 120
Definition at line 945 of file z3py.py.
946 """Set the body of a recursive function. 947 Recursive definitions can be simplified if they are applied to ground 950 >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx)) 951 >>> n = Int('n', ctx) 952 >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1))) 955 >>> s = Solver(ctx=ctx) 956 >>> s.add(fac(n) < 3) 959 >>> s.model().eval(fac(5)) 965args = _get_args(args)
969_args[i] = args[i].ast
void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body)
Define the body of a recursive function.
def RecAddDefinition(f, args, body)
◆ RecFunction() def z3py.RecFunction ( name, * sig )Create a new Z3 recursive with the given sorts.
Definition at line 927 of file z3py.py.
928 """Create a new Z3 recursive with the given sorts.""" 931_z3_assert(len(sig) > 0,
"At least two arguments expected")
935_z3_assert(
is_sort(rng),
"Z3 sort expected")
936dom = (Sort * arity)()
937 fori
in range(arity):
939_z3_assert(
is_sort(sig[i]),
"Z3 sort expected")
Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a recursive function.
def RecFunction(name, *sig)
◆ Repeat() def z3py.Repeat ( t, max =4294967295
, ctx = None
)
Return a tactic that keeps applying `t` until the goal is not modified anymore or the maximum number of iterations `max` is reached. >>> x, y = Ints('x y') >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y) >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip'))) >>> r = t(c) >>> for subgoal in r: print(subgoal) [x == 0, y == 0, x > y] [x == 0, y == 1, x > y] [x == 1, y == 0, x > y] [x == 1, y == 1, x > y] >>> t = Then(t, Tactic('propagate-values')) >>> t(c) [[x == 1, y == 0]]
Definition at line 8552 of file z3py.py.
8552 def Repeat(t, max=4294967295, ctx=None):
8553 """Return a tactic that keeps applying `t` until the goal is not modified anymore 8554 or the maximum number of iterations `max` is reached. 8556 >>> x, y = Ints('x y') 8557 >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y) 8558 >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip'))) 8560 >>> for subgoal in r: print(subgoal) 8561 [x == 0, y == 0, x > y] 8562 [x == 0, y == 1, x > y] 8563 [x == 1, y == 0, x > y] 8564 [x == 1, y == 1, x > y] 8565 >>> t = Then(t, Tactic('propagate-values')) 8569t = _to_tactic(t, ctx)
Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max)
Return a tactic that keeps applying t until the goal is not modified anymore or the maximum number of...
def Repeat(t, max=4294967295, ctx=None)
◆ RepeatBitVec() def z3py.RepeatBitVec ( n, a )Return an expression representing `n` copies of `a`. >>> x = BitVec('x', 8) >>> n = RepeatBitVec(4, x) >>> n RepeatBitVec(4, x) >>> n.size() 32 >>> v0 = BitVecVal(10, 4) >>> print("%.x" % v0.as_long()) a >>> v = simplify(RepeatBitVec(4, v0)) >>> v.size() 16 >>> print("%.x" % v.as_long()) aaaa
Definition at line 4467 of file z3py.py.
4468 """Return an expression representing `n` copies of `a`. 4470 >>> x = BitVec('x', 8) 4471 >>> n = RepeatBitVec(4, x) 4476 >>> v0 = BitVecVal(10, 4) 4477 >>> print("%.x" % v0.as_long()) 4479 >>> v = simplify(RepeatBitVec(4, v0)) 4482 >>> print("%.x" % v.as_long()) 4486_z3_assert(_is_int(n),
"First argument must be an integer")
4487_z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4488 returnBitVecRef(
Z3_mk_repeat(a.ctx_ref(), n, a.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.
◆ Replace() def z3py.Replace ( s, src, dst )Replace the first occurrence of 'src' by 'dst' in 's' >>> r = Replace("aaa", "a", "b") >>> simplify(r) "baa"
Definition at line 11177 of file z3py.py.
11178 """Replace the first occurrence of 'src' by 'dst' in 's' 11179 >>> r = Replace("aaa", "a", "b") 11183ctx = _get_ctx2(dst, s)
11184 ifctx
is None and is_expr(src):
11186src = _coerce_seq(src, ctx)
11187dst = _coerce_seq(dst, ctx)
11188s = _coerce_seq(s, ctx)
11189 returnSeqRef(
Z3_mk_seq_replace(src.ctx_ref(), s.as_ast(), src.as_ast(), dst.as_ast()), s.ctx)
Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst)
Replace the first occurrence of src with dst in s.
◆ reset_params() def z3py.reset_params ( )Reset all global (or module) parameters.
Definition at line 295 of file z3py.py.
296 """Reset all global (or module) parameters.void Z3_API Z3_global_param_reset_all(void)
Restore the value of all global (and module) parameters. This command will not affect already created...
◆ ReSort()Definition at line 11311 of file z3py.py.
11313 returnReSortRef(
Z3_mk_re_sort(s.ctx.ref(), s.ast), s.ctx)
11314 ifs
is None orisinstance(s, Context):
11317 raiseZ3Exception(
"Regular expression sort constructor expects either a string or a context or no argument")
Z3_sort Z3_API Z3_mk_re_sort(Z3_context c, Z3_sort seq)
Create a regular expression sort out of a sequence sort.
Z3_sort Z3_API Z3_mk_string_sort(Z3_context c)
Create a sort for unicode strings.
Referenced by Context.MkReSort().
◆ RNA() def z3py.RNA ( ctx =None
)
Definition at line 9814 of file z3py.py.
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_away(Z3_context c)
Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.
Referenced by get_default_rounding_mode().
◆ RNE() def z3py.RNE ( ctx =None
)
Definition at line 9804 of file z3py.py.
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_even(Z3_context c)
Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.
Referenced by get_default_rounding_mode().
◆ RotateLeft() def z3py.RotateLeft ( a, b )Return an expression representing `a` rotated to the left `b` times. >>> a, b = BitVecs('a b', 16) >>> RotateLeft(a, b) RotateLeft(a, b) >>> simplify(RotateLeft(a, 0)) a >>> simplify(RotateLeft(a, 16)) a
Definition at line 4377 of file z3py.py.
4378 """Return an expression representing `a` rotated to the left `b` times. 4380 >>> a, b = BitVecs('a b', 16) 4381 >>> RotateLeft(a, b) 4383 >>> simplify(RotateLeft(a, 0)) 4385 >>> simplify(RotateLeft(a, 16)) 4388_check_bv_args(a, b)
4389a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the left t2 times.
◆ RotateRight() def z3py.RotateRight ( a, b )Return an expression representing `a` rotated to the right `b` times. >>> a, b = BitVecs('a b', 16) >>> RotateRight(a, b) RotateRight(a, b) >>> simplify(RotateRight(a, 0)) a >>> simplify(RotateRight(a, 16)) a
Definition at line 4393 of file z3py.py.
4394 """Return an expression representing `a` rotated to the right `b` times. 4396 >>> a, b = BitVecs('a b', 16) 4397 >>> RotateRight(a, b) 4399 >>> simplify(RotateRight(a, 0)) 4401 >>> simplify(RotateRight(a, 16)) 4404_check_bv_args(a, b)
4405a, b = _coerce_exprs(a, b)
Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the right t2 times.
◆ RoundNearestTiesToAway() def z3py.RoundNearestTiesToAway ( ctx =None
)
Definition at line 9809 of file z3py.py.
def RoundNearestTiesToAway(ctx=None)
◆ RoundNearestTiesToEven() def z3py.RoundNearestTiesToEven ( ctx =None
)
Definition at line 9799 of file z3py.py.
def RoundNearestTiesToEven(ctx=None)
◆ RoundTowardNegative() def z3py.RoundTowardNegative ( ctx =None
)
Definition at line 9829 of file z3py.py.
Z3_ast Z3_API Z3_mk_fpa_round_toward_negative(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.
def RoundTowardNegative(ctx=None)
◆ RoundTowardPositive() def z3py.RoundTowardPositive ( ctx =None
)
Definition at line 9819 of file z3py.py.
Z3_ast Z3_API Z3_mk_fpa_round_toward_positive(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.
def RoundTowardPositive(ctx=None)
◆ RoundTowardZero() def z3py.RoundTowardZero ( ctx =None
)
Definition at line 9839 of file z3py.py.
Z3_ast Z3_API Z3_mk_fpa_round_toward_zero(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.
def RoundTowardZero(ctx=None)
◆ RTN() def z3py.RTN ( ctx =None
) ◆ RTP() def z3py.RTP ( ctx = None
) ◆ RTZ() def z3py.RTZ ( ctx = None
) ◆ Select() def z3py.Select ( a, * args )
Return a Z3 select array expression. >>> a = Array('a', IntSort(), IntSort()) >>> i = Int('i') >>> Select(a, i) a[i] >>> eq(Select(a, i), a[i]) True
Definition at line 4853 of file z3py.py.
4854 """Return a Z3 select array expression. 4856 >>> a = Array('a', IntSort(), IntSort()) 4860 >>> eq(Select(a, i), a[i]) 4863args = _get_args(args)
4865_z3_assert(
is_array_sort(a),
"First argument must be a Z3 array expression")
◆ SeqFoldLeft() def z3py.SeqFoldLeft ( f, a, s )Definition at line 11244 of file z3py.py.
11245ctx = _get_ctx2(f, s)
11246s = _coerce_seq(s, ctx)
11248 return_to_expr_ref(
Z3_mk_seq_foldl(s.ctx_ref(), f.as_ast(), a.as_ast(), s.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_seq_foldl(Z3_context c, Z3_ast f, Z3_ast a, Z3_ast s)
Create a fold of the function f over the sequence s with accumulator a.
◆ SeqFoldLeftI() def z3py.SeqFoldLeftI ( f, i, a, s )Definition at line 11250 of file z3py.py.
11251ctx = _get_ctx2(f, s)
11252s = _coerce_seq(s, ctx)
11255 return_to_expr_ref(
Z3_mk_seq_foldli(s.ctx_ref(), f.as_ast(), i.as_ast(), a.as_ast(), s.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_seq_foldli(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast a, Z3_ast s)
Create a fold with index tracking of the function f over the sequence s with accumulator a starting a...
def SeqFoldLeftI(f, i, a, s)
◆ SeqMap()Map function 'f' over sequence 's'
Definition at line 11230 of file z3py.py.
11231 """Map function 'f' over sequence 's'""" 11232ctx = _get_ctx2(f, s)
11233s = _coerce_seq(s, ctx)
11234 return_to_expr_ref(
Z3_mk_seq_map(s.ctx_ref(), f.as_ast(), s.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_seq_map(Z3_context c, Z3_ast f, Z3_ast s)
Create a map of the function f over the sequence s.
◆ SeqMapI() def z3py.SeqMapI ( f, i, s )Map function 'f' over sequence 's' at index 'i'
Definition at line 11236 of file z3py.py.
11237 """Map function 'f' over sequence 's' at index 'i'""" 11238ctx = _get_ctx(f, s)
11239s = _coerce_seq(s, ctx)
11242 return_to_expr_ref(
Z3_mk_seq_mapi(s.ctx_ref(), f.as_ast(), i.as_ast(), s.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_seq_mapi(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast s)
Create a map of the function f over the sequence s starting at index i.
◆ SeqSort()Create a sequence sort over elements provided in the argument >>> s = SeqSort(IntSort()) >>> s == Unit(IntVal(1)).sort() True
Definition at line 10898 of file z3py.py.
10899 """Create a sequence sort over elements provided in the argument 10900 >>> s = SeqSort(IntSort()) 10901 >>> s == Unit(IntVal(1)).sort()Z3_sort Z3_API Z3_mk_seq_sort(Z3_context c, Z3_sort s)
Create a sequence sort out of the sort for the elements.
Referenced by Context.MkSeqSort().
◆ set_default_fp_sort() def z3py.set_default_fp_sort ( ebits, sbits, ctx =None
)
Definition at line 9460 of file z3py.py.
9461 global_dflt_fpsort_ebits
9462 global_dflt_fpsort_sbits
9463_dflt_fpsort_ebits = ebits
9464_dflt_fpsort_sbits = sbits
def set_default_fp_sort(ebits, sbits, ctx=None)
◆ set_default_rounding_mode() def z3py.set_default_rounding_mode ( rm, ctx =None
)
Definition at line 9447 of file z3py.py.
9448 global_dflt_rounding_mode
9450_dflt_rounding_mode = rm.decl().kind()
9452_z3_assert(_dflt_rounding_mode
in_ROUNDING_MODES,
"illegal rounding mode")
9453_dflt_rounding_mode = rm
def set_default_rounding_mode(rm, ctx=None)
◆ set_option() def z3py.set_option ( * args, ** kws )Alias for 'set_param' for backward compatibility.
Definition at line 301 of file z3py.py.
302 """Alias for 'set_param' for backward compatibility.def set_option(*args, **kws)
def set_param(*args, **kws)
◆ set_param() def z3py.set_param ( * args, ** kws )Set Z3 global (or module) parameters. >>> set_param(precision=10)
Definition at line 271 of file z3py.py.
272 """Set Z3 global (or module) parameters. 274 >>> set_param(precision=10) 277_z3_assert(len(args) % 2 == 0,
"Argument list must have an even number of elements.")
281 if notset_pp_option(k, v):
void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)
Set a global (or module) parameter. This setting is shared by all Z3 contexts.
Referenced by set_option().
◆ SetAdd()Add element e to set s >>> a = Const('a', SetSort(IntSort())) >>> SetAdd(a, 1) Store(a, 1, True)
Definition at line 5012 of file z3py.py.
5013 """ Add element e to set s 5014 >>> a = Const('a', SetSort(IntSort())) 5018ctx = _ctx_from_ast_arg_list([s, e])
5019e = _py2expr(e, ctx)
5020 returnArrayRef(
Z3_mk_set_add(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)
Add an element to a set.
◆ SetComplement() def z3py.SetComplement ( s )The complement of set s >>> a = Const('a', SetSort(IntSort())) >>> SetComplement(a) complement(a)
Definition at line 5034 of file z3py.py.
5035 """ The complement of set s 5036 >>> a = Const('a', SetSort(IntSort())) 5037 >>> SetComplement(a)Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)
Take the complement of a set.
◆ SetDel()Remove element e to set s >>> a = Const('a', SetSort(IntSort())) >>> SetDel(a, 1) Store(a, 1, False)
Definition at line 5023 of file z3py.py.
5024 """ Remove element e to set s 5025 >>> a = Const('a', SetSort(IntSort())) 5029ctx = _ctx_from_ast_arg_list([s, e])
5030e = _py2expr(e, ctx)
5031 returnArrayRef(
Z3_mk_set_del(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)
Remove an element to a set.
◆ SetDifference() def z3py.SetDifference ( a, b )The set difference of a and b >>> a = Const('a', SetSort(IntSort())) >>> b = Const('b', SetSort(IntSort())) >>> SetDifference(a, b) setminus(a, b)
Definition at line 5044 of file z3py.py.
5045 """ The set difference of a and b 5046 >>> a = Const('a', SetSort(IntSort())) 5047 >>> b = Const('b', SetSort(IntSort())) 5048 >>> SetDifference(a, b) 5051ctx = _ctx_from_ast_arg_list([a, b])
Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Take the set difference between two sets.
◆ SetHasSize() def z3py.SetHasSize ( a, k )Definition at line 4926 of file z3py.py.
4928k = _py2expr(k, ctx)
Z3_ast Z3_API Z3_mk_set_has_size(Z3_context c, Z3_ast set, Z3_ast k)
Create predicate that holds if Boolean array set has k elements set to true.
◆ SetIntersect() def z3py.SetIntersect ( * args )Take the union of sets >>> a = Const('a', SetSort(IntSort())) >>> b = Const('b', SetSort(IntSort())) >>> SetIntersect(a, b) intersection(a, b)
Definition at line 4999 of file z3py.py.
5000 """ Take the union of sets 5001 >>> a = Const('a', SetSort(IntSort())) 5002 >>> b = Const('b', SetSort(IntSort())) 5003 >>> SetIntersect(a, b) 5006args = _get_args(args)
5007ctx = _ctx_from_ast_arg_list(args)
5008_args, sz = _to_ast_array(args)
Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the intersection of a list of sets.
◆ SetSort()Sets.
Create a set sort over element sort s
Definition at line 4963 of file z3py.py.
4964 """ Create a set sort over element sort s"""Referenced by Context.MkSetSort().
◆ SetUnion() def z3py.SetUnion ( * args )Take the union of sets >>> a = Const('a', SetSort(IntSort())) >>> b = Const('b', SetSort(IntSort())) >>> SetUnion(a, b) union(a, b)
Definition at line 4986 of file z3py.py.
4987 """ Take the union of sets 4988 >>> a = Const('a', SetSort(IntSort())) 4989 >>> b = Const('b', SetSort(IntSort())) 4993args = _get_args(args)
4994ctx = _ctx_from_ast_arg_list(args)
4995_args, sz = _to_ast_array(args)
Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the union of a list of sets.
◆ SignExt() def z3py.SignExt ( n, a )Return a bit-vector expression with `n` extra sign-bits. >>> x = BitVec('x', 16) >>> n = SignExt(8, x) >>> n.size() 24 >>> n SignExt(8, x) >>> n.sort() BitVec(24) >>> v0 = BitVecVal(2, 2) >>> v0 2 >>> v0.size() 2 >>> v = simplify(SignExt(6, v0)) >>> v 254 >>> v.size() 8 >>> print("%.x" % v.as_long()) fe
Definition at line 4409 of file z3py.py.
4410 """Return a bit-vector expression with `n` extra sign-bits. 4412 >>> x = BitVec('x', 16) 4413 >>> n = SignExt(8, x) 4420 >>> v0 = BitVecVal(2, 2) 4425 >>> v = simplify(SignExt(6, v0)) 4430 >>> print("%.x" % v.as_long()) 4434_z3_assert(_is_int(n),
"First argument must be an integer")
4435_z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4436 returnBitVecRef(
Z3_mk_sign_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)
Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...
◆ SimpleSolver() def z3py.SimpleSolver ( ctx =None
, logFile = None
)
Return a simple general purpose solver with limited amount of preprocessing. >>> s = SimpleSolver() >>> x = Int('x') >>> s.add(x > 0) >>> s.check() sat
Definition at line 7486 of file z3py.py.
7487 """Return a simple general purpose solver with limited amount of preprocessing. 7489 >>> s = SimpleSolver()Z3_solver Z3_API Z3_mk_simple_solver(Z3_context c)
Create a new incremental solver.
def SimpleSolver(ctx=None, logFile=None)
◆ simplify() def z3py.simplify ( a, * arguments, ** keywords )Utils.
Simplify the expression `a` using the given options. This function has many options. Use `help_simplify` to obtain the complete list. >>> x = Int('x') >>> y = Int('y') >>> simplify(x + 1 + y + x + 1) 2 + 2*x + y >>> simplify((x + 1)*(y + 1), som=True) 1 + x + y + x*y >>> simplify(Distinct(x, y, 1), blast_distinct=True) And(Not(x == y), Not(x == 1), Not(y == 1)) >>> simplify(And(x == 0, y == 1), elim_and=True) Not(Or(Not(x == 0), Not(y == 1)))
Definition at line 8904 of file z3py.py.
8904 def simplify(a, *arguments, **keywords):
8905 """Simplify the expression `a` using the given options. 8907 This function has many options. Use `help_simplify` to obtain the complete list. 8911 >>> simplify(x + 1 + y + x + 1) 8913 >>> simplify((x + 1)*(y + 1), som=True) 8915 >>> simplify(Distinct(x, y, 1), blast_distinct=True) 8916 And(Not(x == y), Not(x == 1), Not(y == 1)) 8917 >>> simplify(And(x == 0, y == 1), elim_and=True) 8918 Not(Or(Not(x == 0), Not(y == 1))) 8921_z3_assert(
is_expr(a),
"Z3 expression expected")
8922 iflen(arguments) > 0
orlen(keywords) > 0:
8924 return_to_expr_ref(
Z3_simplify_ex(a.ctx_ref(), a.as_ast(), p.params), a.ctx)
8926 return_to_expr_ref(
Z3_simplify(a.ctx_ref(), a.as_ast()), a.ctx)
Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a)
Interface to simplifier.
Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p)
Interface to simplifier.
Referenced by Q(), RatVal(), and Expr< R extends Sort >.simplify().
◆ simplify_param_descrs() def z3py.simplify_param_descrs ( )Return the set of parameter descriptions for Z3 `simplify` procedure.
Definition at line 8934 of file z3py.py.
8935 """Return the set of parameter descriptions for Z3 `simplify` procedure."""Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(Z3_context c)
Return the parameter description set for the simplify procedure.
def simplify_param_descrs()
◆ solve() def z3py.solve ( * args, ** keywords )Solve the constraints `*args`. This is a simple function for creating demonstrations. It creates a solver, configure it using the options in `keywords`, adds the constraints in `args`, and invokes check. >>> a = Int('a') >>> solve(a > 0, a < 2) [a = 1]
Definition at line 9166 of file z3py.py.
9166 def solve(*args, **keywords):
9167 """Solve the constraints `*args`. 9169 This is a simple function for creating demonstrations. It creates a solver, 9170 configure it using the options in `keywords`, adds the constraints 9171 in `args`, and invokes check. 9174 >>> solve(a > 0, a < 2) 9177show = keywords.pop(
"show",
False)
9185print(
"no solution")
9187print(
"failed to solve")
def solve(*args, **keywords)
◆ solve_using() def z3py.solve_using ( s, * args, ** keywords )Solve the constraints `*args` using solver `s`. This is a simple function for creating demonstrations. It is similar to `solve`, but it uses the given solver `s`. It configures solver `s` using the options in `keywords`, adds the constraints in `args`, and invokes check.
Definition at line 9196 of file z3py.py.
9197 """Solve the constraints `*args` using solver `s`. 9199 This is a simple function for creating demonstrations. It is similar to `solve`, 9200 but it uses the given solver `s`. 9201 It configures solver `s` using the options in `keywords`, adds the constraints 9202 in `args`, and invokes check. 9204show = keywords.pop(
"show",
False)
9206_z3_assert(isinstance(s, Solver),
"Solver object expected")
9214print(
"no solution")
9216print(
"failed to solve")
9223print(
"Solution:")
def solve_using(s, *args, **keywords)
◆ SolverFor() def z3py.SolverFor ( logic, ctx =None
, logFile = None
)
Create a solver customized for the given logic. The parameter `logic` is a string. It should be contains the name of a SMT-LIB logic. See http://www.smtlib.org/ for the name of all available logics. >>> s = SolverFor("QF_LIA") >>> x = Int('x') >>> s.add(x > 0) >>> s.add(x < 2) >>> s.check() sat >>> s.model() [x = 1]
Definition at line 7465 of file z3py.py.
7465 def SolverFor(logic, ctx=None, logFile=None):
7466 """Create a solver customized for the given logic. 7468 The parameter `logic` is a string. It should be contains 7469 the name of a SMT-LIB logic. 7470 See http://www.smtlib.org/ for the name of all available logics. 7472 >>> s = SolverFor("QF_LIA")Z3_solver Z3_API Z3_mk_solver_for_logic(Z3_context c, Z3_symbol logic)
Create a new solver customized for the given logic. It behaves like Z3_mk_solver if the logic is unkn...
def SolverFor(logic, ctx=None, logFile=None)
◆ Sqrt() def z3py.Sqrt ( a, ctx =None
)
Return a Z3 expression which represents the square root of a. >>> x = Real('x') >>> Sqrt(x) x**(1/2)
Definition at line 3457 of file z3py.py.
3457 def Sqrt(a, ctx=None):
3458 """ Return a Z3 expression which represents the square root of a. ◆ SRem()Create the Z3 expression signed remainder. Use the operator % for signed modulus, and URem() for unsigned remainder. >>> x = BitVec('x', 32) >>> y = BitVec('y', 32) >>> SRem(x, y) SRem(x, y) >>> SRem(x, y).sort() BitVec(32) >>> (x % y).sexpr() '(bvsmod x y)' >>> SRem(x, y).sexpr() '(bvsrem x y)'
Definition at line 4324 of file z3py.py.
4325 """Create the Z3 expression signed remainder. 4327 Use the operator % for signed modulus, and URem() for unsigned remainder. 4329 >>> x = BitVec('x', 32) 4330 >>> y = BitVec('y', 32) 4333 >>> SRem(x, y).sort() 4337 >>> SRem(x, y).sexpr() 4340_check_bv_args(a, b)
4341a, b = _coerce_exprs(a, b)
4342 returnBitVecRef(
Z3_mk_bvsrem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows dividend).
◆ Star()Create the regular expression accepting zero or more repetitions of argument. >>> re = Star(Re("a")) >>> print(simplify(InRe("aa", re))) True >>> print(simplify(InRe("ab", re))) False >>> print(simplify(InRe("", re))) True
Definition at line 11418 of file z3py.py.
11419 """Create the regular expression accepting zero or more repetitions of argument. 11420 >>> re = Star(Re("a")) 11421 >>> print(simplify(InRe("aa", re))) 11423 >>> print(simplify(InRe("ab", re))) 11425 >>> print(simplify(InRe("", re))) 11429_z3_assert(
is_expr(re),
"expression expected")
11430 returnReRef(
Z3_mk_re_star(re.ctx_ref(), re.as_ast()), re.ctx)
Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re)
Create the regular language re*.
◆ Store() def z3py.Store ( a, * args )Return a Z3 store array expression. >>> a = Array('a', IntSort(), IntSort()) >>> i, v = Ints('i v') >>> s = Store(a, i, v) >>> s.sort() Array(Int, Int) >>> prove(s[i] == v) proved >>> j = Int('j') >>> prove(Implies(i != j, s[j] == a[j])) proved
Definition at line 4836 of file z3py.py.
4836 def Store(a, *args):
4837 """Return a Z3 store array expression. 4839 >>> a = Array('a', IntSort(), IntSort()) 4840 >>> i, v = Ints('i v') 4841 >>> s = Store(a, i, v) 4844 >>> prove(s[i] == v) 4847 >>> prove(Implies(i != j, s[j] == a[j]))Referenced by ModelRef.get_interp().
◆ StrFromCode() def z3py.StrFromCode ( c )Convert code to a string
Definition at line 11286 of file z3py.py.
11287 """Convert code to a string"""Z3_ast Z3_API Z3_mk_string_from_code(Z3_context c, Z3_ast a)
Code to string conversion.
◆ String() def z3py.String ( name, ctx =None
)
Return a string constant named `name`. If `ctx=None`, then the global context is used. >>> x = String('x')
Definition at line 11061 of file z3py.py.
11061 def String(name, ctx=None):
11062 """Return a string constant named `name`. If `ctx=None`, then the global context is used. 11064 >>> x = String('x') 11066ctx = _get_ctx(ctx)
def String(name, ctx=None)
Referenced by Context.Context(), Statistics.getEntries(), Statistics.getKeys(), Context.getProbeNames(), Context.getSimplifierNames(), Context.getTacticNames(), Context.mkString(), Strings(), and FuncInterp< R extends Sort >.toString().
◆ Strings() def z3py.Strings ( names, ctx =None
)
Return a tuple of String constants.
Definition at line 11070 of file z3py.py.
11070 def Strings(names, ctx=None):
11071 """Return a tuple of String constants. """ 11072ctx = _get_ctx(ctx)
11073 ifisinstance(names, str):
11074names = names.split(
" ")
11075 return[
String(name, ctx)
forname
innames]
def Strings(names, ctx=None)
◆ StringSort() def z3py.StringSort ( ctx =None
)
Create a string sort >>> s = StringSort() >>> print(s) String
Definition at line 10879 of file z3py.py.
10880 """Create a string sort 10881 >>> s = StringSort() 10885ctx = _get_ctx(ctx)
Referenced by String().
◆ StringVal() def z3py.StringVal ( s, ctx =None
)
create a string expression
Definition at line 11054 of file z3py.py.
11055 """create a string expression""" 11056s =
"".join(str(ch)
if32 <= ord(ch)
andord(ch) < 127
else "\\u{%x}"% (ord(ch))
forch
ins)
11057ctx = _get_ctx(ctx)
Z3_ast Z3_API Z3_mk_string(Z3_context c, Z3_string s)
Create a string constant out of the string that is passed in The string may contain escape encoding f...
Referenced by CharIsDigit(), deserialize(), Extract(), and AlgebraicNumRef.index().
◆ StrToCode()Convert a unit length string to integer code
Definition at line 11280 of file z3py.py.
11281 """Convert a unit length string to integer code"""Z3_ast Z3_API Z3_mk_string_to_code(Z3_context c, Z3_ast a)
String to code conversion.
◆ StrToInt()Convert string expression to integer >>> a = StrToInt("1") >>> simplify(1 == a) True >>> b = StrToInt("2") >>> simplify(1 == b) False >>> c = StrToInt(IntToStr(2)) >>> simplify(1 == c) False
Definition at line 11257 of file z3py.py.
11258 """Convert string expression to integer 11259 >>> a = StrToInt("1") 11260 >>> simplify(1 == a) 11262 >>> b = StrToInt("2") 11263 >>> simplify(1 == b) 11265 >>> c = StrToInt(IntToStr(2)) 11266 >>> simplify(1 == c)Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s)
Convert string to integer.
◆ SubSeq() def z3py.SubSeq ( s, offset, length )Extract substring or subsequence starting at offset
Definition at line 11083 of file z3py.py.
11083 def SubSeq(s, offset, length):
11084 """Extract substring or subsequence starting at offset""" 11085 return Extract(s, offset, length)
def SubSeq(s, offset, length)
◆ substitute() def z3py.substitute ( t, * m )Apply substitution m on t, m is a list of pairs of the form (from, to). Every occurrence in t of from is replaced with to. >>> x = Int('x') >>> y = Int('y') >>> substitute(x + 1, (x, y + 1)) y + 1 + 1 >>> f = Function('f', IntSort(), IntSort()) >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1))) 1 + 1
Definition at line 8939 of file z3py.py.
8940 """Apply substitution m on t, m is a list of pairs of the form (from, to). 8941 Every occurrence in t of from is replaced with to. 8945 >>> substitute(x + 1, (x, y + 1)) 8947 >>> f = Function('f', IntSort(), IntSort()) 8948 >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1))) 8951 ifisinstance(m, tuple):
8953 ifisinstance(m1, list)
andall(isinstance(p, tuple)
forp
inm1):
8956_z3_assert(
is_expr(t),
"Z3 expression expected")
8958all([isinstance(p, tuple)
and is_expr(p[0])
and is_expr(p[1])
forp
inm]),
8959 "Z3 invalid substitution, expression pairs expected.")
8961all([p[0].sort().
eq(p[1].sort())
forp
inm]),
8962 'Z3 invalid substitution, mismatching "from" and "to" sorts.')
8964_from = (Ast * num)()
8966 fori
in range(num):
8967_from[i] = m[i][0].as_ast()
8968_to[i] = m[i][1].as_ast()
8969 return_to_expr_ref(
Z3_substitute(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
Z3_ast Z3_API Z3_substitute(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])
Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs....
Referenced by Expr< R extends Sort >.substitute().
◆ substitute_funs() def z3py.substitute_funs ( t, * m )Apply substitution m on t, m is a list of pairs of a function and expression (from, to) Every occurrence in to of the function from is replaced with the expression to. The expression to can have free variables, that refer to the arguments of from. For examples, see
Definition at line 8992 of file z3py.py.
8993 """Apply substitution m on t, m is a list of pairs of a function and expression (from, to) 8994 Every occurrence in to of the function from is replaced with the expression to. 8995 The expression to can have free variables, that refer to the arguments of from. 8998 ifisinstance(m, tuple):
9000 ifisinstance(m1, list)
andall(isinstance(p, tuple)
forp
inm1):
9003_z3_assert(
is_expr(t),
"Z3 expression expected")
9004_z3_assert(all([isinstance(p, tuple)
and is_func_decl(p[0])
and is_expr(p[1])
forp
inm]),
"Z3 invalid substitution, function pairs expected.")
9006_from = (FuncDecl * num)()
9008 fori
in range(num):
9009_from[i] = m[i][0].as_func_decl()
9010_to[i] = m[i][1].as_ast()
9011 return_to_expr_ref(
Z3_substitute_funs(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
Z3_ast Z3_API Z3_substitute_funs(Z3_context c, Z3_ast a, unsigned num_funs, Z3_func_decl const from[], Z3_ast const to[])
Substitute functions in from with new expressions in to.
def substitute_funs(t, *m)
◆ substitute_vars() def z3py.substitute_vars ( t, * m )Substitute the free variables in t with the expression in m. >>> v0 = Var(0, IntSort()) >>> v1 = Var(1, IntSort()) >>> x = Int('x') >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> # replace v0 with x+1 and v1 with x >>> substitute_vars(f(v0, v1), x + 1, x) f(x + 1, x)
Definition at line 8972 of file z3py.py.
8973 """Substitute the free variables in t with the expression in m. 8975 >>> v0 = Var(0, IntSort()) 8976 >>> v1 = Var(1, IntSort()) 8978 >>> f = Function('f', IntSort(), IntSort(), IntSort()) 8979 >>> # replace v0 with x+1 and v1 with x 8980 >>> substitute_vars(f(v0, v1), x + 1, x) 8984_z3_assert(
is_expr(t),
"Z3 expression expected")
8985_z3_assert(all([
is_expr(n)
forn
inm]),
"Z3 invalid substitution, list of expressions expected.")
8988 fori
in range(num):
8989_to[i] = m[i].as_ast()
Z3_ast Z3_API Z3_substitute_vars(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])
Substitute the variables in a with the expressions in to. For every i smaller than num_exprs,...
def substitute_vars(t, *m)
◆ SubString() def z3py.SubString ( s, offset, length )Extract substring or subsequence starting at offset
Definition at line 11078 of file z3py.py.
11079 """Extract substring or subsequence starting at offset""" 11080 return Extract(s, offset, length)
def SubString(s, offset, length)
◆ SuffixOf() def z3py.SuffixOf ( a, b )Check if 'a' is a suffix of 'b' >>> s1 = SuffixOf("ab", "abc") >>> simplify(s1) False >>> s2 = SuffixOf("bc", "abc") >>> simplify(s2) True
Definition at line 11143 of file z3py.py.
11144 """Check if 'a' is a suffix of 'b' 11145 >>> s1 = SuffixOf("ab", "abc") 11148 >>> s2 = SuffixOf("bc", "abc") 11152ctx = _get_ctx2(a, b)
11153a = _coerce_seq(a, ctx)
11154b = _coerce_seq(b, ctx)
11155 returnBoolRef(
Z3_mk_seq_suffix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s)
Check if suffix is a suffix of s.
◆ Sum()Create the sum of the Z3 expressions. >>> a, b, c = Ints('a b c') >>> Sum(a, b, c) a + b + c >>> Sum([a, b, c]) a + b + c >>> A = IntVector('a', 5) >>> Sum(A) a__0 + a__1 + a__2 + a__3 + a__4
Definition at line 9014 of file z3py.py.
9015 """Create the sum of the Z3 expressions. 9017 >>> a, b, c = Ints('a b c') 9022 >>> A = IntVector('a', 5) 9024 a__0 + a__1 + a__2 + a__3 + a__4 9026args = _get_args(args)
9029ctx = _ctx_from_ast_arg_list(args)
9031 return_reduce(
lambdaa, b: a + b, args, 0)
9032args = _coerce_expr_list(args, ctx)
9034 return_reduce(
lambdaa, b: a + b, args, 0)
9036_args, sz = _to_ast_array(args)
9037 returnArithRef(
Z3_mk_add(ctx.ref(), sz, _args), ctx)
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].
◆ tactic_description() def z3py.tactic_description ( name, ctx =None
)
Return a short description for the tactic named `name`. >>> d = tactic_description('simplify')
Definition at line 8593 of file z3py.py.
8594 """Return a short description for the tactic named `name`. 8596 >>> d = tactic_description('simplify')Z3_string Z3_API Z3_tactic_get_descr(Z3_context c, Z3_string name)
Return a string containing a description of the tactic with the given name.
Referenced by describe_tactics().
◆ tactics() def z3py.tactics ( ctx =None
)
Return a list of all available tactics in Z3. >>> l = tactics() >>> l.count('simplify') == 1 True
Definition at line 8582 of file z3py.py.
8583 """Return a list of all available tactics in Z3. 8586 >>> l.count('simplify') == 1unsigned Z3_API Z3_get_num_tactics(Z3_context c)
Return the number of builtin tactics available in Z3.
Z3_string Z3_API Z3_get_tactic_name(Z3_context c, unsigned i)
Return the name of the idx tactic.
Referenced by describe_tactics().
◆ Then() def z3py.Then ( * ts, ** ks )Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks). >>> x, y = Ints('x y') >>> t = Then(Tactic('simplify'), Tactic('solve-eqs')) >>> t(And(x == 0, y > x + 1)) [[Not(y <= 1)]] >>> t(And(x == 0, y > x + 1)).as_expr() Not(y <= 1)
Definition at line 8450 of file z3py.py.
8450 def Then(*ts, **ks):
8451 """Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks). 8453 >>> x, y = Ints('x y') 8454 >>> t = Then(Tactic('simplify'), Tactic('solve-eqs')) 8455 >>> t(And(x == 0, y > x + 1)) 8457 >>> t(And(x == 0, y > x + 1)).as_expr() ◆ to_Ast() ◆ to_AstVectorObj() def z3py.to_AstVectorObj ( ptr )Definition at line 11512 of file z3py.py.
11513v = AstVectorObj(ptr)
11514super(ctypes.c_void_p, v).__init__(ptr)
Referenced by on_clause_eh().
◆ to_ContextObj() def z3py.to_ContextObj ( ptr )Definition at line 11507 of file z3py.py.
11508ctx = ContextObj(ptr)
11509super(ctypes.c_void_p, ctx).__init__(ptr)
Referenced by user_prop_fresh().
◆ to_symbol() def z3py.to_symbol ( s, ctx =None
)
Convert an integer or string into a Z3 symbol.
Definition at line 124 of file z3py.py.
125 """Convert an integer or string into a Z3 symbol."""Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s)
Create a Z3 symbol using a C string.
Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i)
Create a Z3 symbol using an integer.
Referenced by Fixedpoint.add_rule(), Optimize.add_soft(), Array(), BitVec(), Bool(), Const(), CreateDatatypes(), DatatypeSort(), DeclareSort(), DeclareTypeVar(), EnumSort(), FiniteDomainSort(), FP(), Function(), ParamDescrsRef.get_documentation(), ParamDescrsRef.get_kind(), Int(), is_quantifier(), PropagateFunction(), prove(), Real(), RecFunction(), ParamsRef.set(), Fixedpoint.set_predicate_representation(), SolverFor(), String(), and Fixedpoint.update_rule().
◆ ToInt()Return the Z3 expression ToInt(a). >>> x = Real('x') >>> x.sort() Real >>> n = ToInt(x) >>> n ToInt(x) >>> n.sort() Int
Definition at line 3422 of file z3py.py.
3423 """ Return the Z3 expression ToInt(a). 3435_z3_assert(a.is_real(),
"Z3 real expression expected.")
Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1)
Coerce a real to an integer.
◆ ToReal()Return the Z3 expression ToReal(a). >>> x = Int('x') >>> x.sort() Int >>> n = ToReal(x) >>> n ToReal(x) >>> n.sort() Real
Definition at line 3404 of file z3py.py.
3405 """ Return the Z3 expression ToReal(a). 3417_z3_assert(a.is_int(),
"Z3 integer expression expected.")
Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)
Coerce an integer to a real.
◆ TransitiveClosure() def z3py.TransitiveClosure ( f )Given a binary relation R, such that the two arguments have the same sort create the transitive closure relation R+. The transitive closure R+ is a new relation.
Definition at line 11495 of file z3py.py.
11496 """Given a binary relation R, such that the two arguments have the same sort 11497 create the transitive closure relation R+. 11498 The transitive closure R+ is a new relation.Z3_func_decl Z3_API Z3_mk_transitive_closure(Z3_context c, Z3_func_decl f)
create transitive closure of binary relation.
◆ TreeOrder() def z3py.TreeOrder ( a, index )Definition at line 11487 of file z3py.py.
Z3_func_decl Z3_API Z3_mk_tree_order(Z3_context c, Z3_sort a, unsigned id)
create a tree ordering relation over signature a identified using index id.
◆ TryFor() def z3py.TryFor ( t, ms, ctx =None
)
Return a tactic that applies `t` to a given goal for `ms` milliseconds. If `t` does not terminate in `ms` milliseconds, then it fails.
Definition at line 8573 of file z3py.py.
8573 def TryFor(t, ms, ctx=None):
8574 """Return a tactic that applies `t` to a given goal for `ms` milliseconds. 8576 If `t` does not terminate in `ms` milliseconds, then it fails. 8578t = _to_tactic(t, ctx)
Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms)
Return a tactic that applies t to a given goal for ms milliseconds. If t does not terminate in ms mil...
def TryFor(t, ms, ctx=None)
◆ TupleSort() def z3py.TupleSort ( name, sorts, ctx =None
)
Create a named tuple sort base on a set of underlying sorts Example: >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
Definition at line 5409 of file z3py.py.
5410 """Create a named tuple sort base on a set of underlying sorts 5412 >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()]) 5414tuple = Datatype(name, ctx)
5415projects = [(
"project%d"% i, sorts[i])
fori
in range(len(sorts))]
5416tuple.declare(name, *projects)
5417tuple = tuple.create()
5418 returntuple, tuple.constructor(0), [tuple.accessor(0, i)
fori
in range(len(sorts))]
def TupleSort(name, sorts, ctx=None)
Referenced by Context.MkTupleSort(), and Context.mkTupleSort().
◆ UDiv()Create the Z3 expression (unsigned) division `self / other`. Use the operator / for signed division. >>> x = BitVec('x', 32) >>> y = BitVec('y', 32) >>> UDiv(x, y) UDiv(x, y) >>> UDiv(x, y).sort() BitVec(32) >>> (x / y).sexpr() '(bvsdiv x y)' >>> UDiv(x, y).sexpr() '(bvudiv x y)'
Definition at line 4282 of file z3py.py.
4283 """Create the Z3 expression (unsigned) division `self / other`. 4285 Use the operator / for signed division. 4287 >>> x = BitVec('x', 32) 4288 >>> y = BitVec('y', 32) 4291 >>> UDiv(x, y).sort() 4295 >>> UDiv(x, y).sexpr() 4298_check_bv_args(a, b)
4299a, b = _coerce_exprs(a, b)
4300 returnBitVecRef(
Z3_mk_bvudiv(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned division.
◆ UGE()Create the Z3 expression (unsigned) `other >= self`. Use the operator >= for signed greater than or equal to. >>> x, y = BitVecs('x y', 32) >>> UGE(x, y) UGE(x, y) >>> (x >= y).sexpr() '(bvsge x y)' >>> UGE(x, y).sexpr() '(bvuge x y)'
Definition at line 4246 of file z3py.py.
4247 """Create the Z3 expression (unsigned) `other >= self`. 4249 Use the operator >= for signed greater than or equal to. 4251 >>> x, y = BitVecs('x y', 32) 4254 >>> (x >= y).sexpr() 4256 >>> UGE(x, y).sexpr() 4259_check_bv_args(a, b)
4260a, b = _coerce_exprs(a, b)
4261 returnBoolRef(
Z3_mk_bvuge(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.
◆ UGT()Create the Z3 expression (unsigned) `other > self`. Use the operator > for signed greater than. >>> x, y = BitVecs('x y', 32) >>> UGT(x, y) UGT(x, y) >>> (x > y).sexpr() '(bvsgt x y)' >>> UGT(x, y).sexpr() '(bvugt x y)'
Definition at line 4264 of file z3py.py.
4265 """Create the Z3 expression (unsigned) `other > self`. 4267 Use the operator > for signed greater than. 4269 >>> x, y = BitVecs('x y', 32) 4274 >>> UGT(x, y).sexpr() 4277_check_bv_args(a, b)
4278a, b = _coerce_exprs(a, b)
4279 returnBoolRef(
Z3_mk_bvugt(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than.
◆ ULE()Create the Z3 expression (unsigned) `other <= self`. Use the operator <= for signed less than or equal to. >>> x, y = BitVecs('x y', 32) >>> ULE(x, y) ULE(x, y) >>> (x <= y).sexpr() '(bvsle x y)' >>> ULE(x, y).sexpr() '(bvule x y)'
Definition at line 4210 of file z3py.py.
4211 """Create the Z3 expression (unsigned) `other <= self`. 4213 Use the operator <= for signed less than or equal to. 4215 >>> x, y = BitVecs('x y', 32) 4218 >>> (x <= y).sexpr() 4220 >>> ULE(x, y).sexpr() 4223_check_bv_args(a, b)
4224a, b = _coerce_exprs(a, b)
4225 returnBoolRef(
Z3_mk_bvule(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than or equal to.
◆ ULT()Create the Z3 expression (unsigned) `other < self`. Use the operator < for signed less than. >>> x, y = BitVecs('x y', 32) >>> ULT(x, y) ULT(x, y) >>> (x < y).sexpr() '(bvslt x y)' >>> ULT(x, y).sexpr() '(bvult x y)'
Definition at line 4228 of file z3py.py.
4229 """Create the Z3 expression (unsigned) `other < self`. 4231 Use the operator < for signed less than. 4233 >>> x, y = BitVecs('x y', 32) 4238 >>> ULT(x, y).sexpr() 4241_check_bv_args(a, b)
4242a, b = _coerce_exprs(a, b)
4243 returnBoolRef(
Z3_mk_bvult(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than.
◆ Union() def z3py.Union ( * args )Create union of regular expressions. >>> re = Union(Re("a"), Re("b"), Re("c")) >>> print (simplify(InRe("d", re))) False
Definition at line 11345 of file z3py.py.
11346 """Create union of regular expressions. 11347 >>> re = Union(Re("a"), Re("b"), Re("c")) 11348 >>> print (simplify(InRe("d", re))) 11351args = _get_args(args)
11354_z3_assert(sz > 0,
"At least one argument expected.")
11355_z3_assert(all([
is_re(a)
fora
inargs]),
"All arguments must be regular expressions.")
11360 fori
in range(sz):
11361v[i] = args[i].as_ast()
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.
Referenced by ReRef.__add__().
◆ Unit()Create a singleton sequence
Definition at line 11123 of file z3py.py.
11124 """Create a singleton sequence"""Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a)
Create a unit sequence of a.
◆ Update() def z3py.Update ( a, * args )Return a Z3 store array expression. >>> a = Array('a', IntSort(), IntSort()) >>> i, v = Ints('i v') >>> s = Update(a, i, v) >>> s.sort() Array(Int, Int) >>> prove(s[i] == v) proved >>> j = Int('j') >>> prove(Implies(i != j, s[j] == a[j])) proved
Definition at line 4793 of file z3py.py.
4794 """Return a Z3 store array expression. 4796 >>> a = Array('a', IntSort(), IntSort()) 4797 >>> i, v = Ints('i v') 4798 >>> s = Update(a, i, v) 4801 >>> prove(s[i] == v) 4804 >>> prove(Implies(i != j, s[j] == a[j])) 4808_z3_assert(
is_array_sort(a),
"First argument must be a Z3 array expression")
4809args = _get_args(args)
4812 raiseZ3Exception(
"array update requires index and value arguments")
4816i = a.sort().domain().cast(i)
4817v = a.sort().
range().cast(v)
4818 return_to_expr_ref(
Z3_mk_store(ctx.ref(), a.as_ast(), i.as_ast(), v.as_ast()), ctx)
4819v = a.sort().
range().cast(args[-1])
4820idxs = [a.sort().domain_n(i).cast(args[i])
fori
in range(len(args)-1)]
4821_args, sz = _to_ast_array(idxs)
4822 return_to_expr_ref(
Z3_mk_store_n(ctx.ref(), a.as_ast(), sz, _args, v.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
Array update.
Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs, Z3_ast v)
n-ary Array update.
Referenced by Store().
◆ URem()Create the Z3 expression (unsigned) remainder `self % other`. Use the operator % for signed modulus, and SRem() for signed remainder. >>> x = BitVec('x', 32) >>> y = BitVec('y', 32) >>> URem(x, y) URem(x, y) >>> URem(x, y).sort() BitVec(32) >>> (x % y).sexpr() '(bvsmod x y)' >>> URem(x, y).sexpr() '(bvurem x y)'
Definition at line 4303 of file z3py.py.
4304 """Create the Z3 expression (unsigned) remainder `self % other`. 4306 Use the operator % for signed modulus, and SRem() for signed remainder. 4308 >>> x = BitVec('x', 32) 4309 >>> y = BitVec('y', 32) 4312 >>> URem(x, y).sort() 4316 >>> URem(x, y).sexpr() 4319_check_bv_args(a, b)
4320a, b = _coerce_exprs(a, b)
4321 returnBitVecRef(
Z3_mk_bvurem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned remainder.
◆ user_prop_created() def z3py.user_prop_created ( ctx, cb, id )Definition at line 11623 of file z3py.py.
11624prop = _prop_closures.get(ctx)
11627id = _to_expr_ref(
to_Ast(id), prop.ctx())
def user_prop_created(ctx, cb, id)
◆ user_prop_decide() def z3py.user_prop_decide ( ctx, cb, t, idx, phase )Definition at line 11657 of file z3py.py.
11658prop = _prop_closures.get(ctx)
11661t = _to_expr_ref(
to_Ast(t_ref), prop.ctx())
11662prop.decide(t, idx, phase)
def user_prop_decide(ctx, cb, t, idx, phase)
◆ user_prop_diseq() def z3py.user_prop_diseq ( ctx, cb, x, y )Definition at line 11648 of file z3py.py.
11649prop = _prop_closures.get(ctx)
11652x = _to_expr_ref(
to_Ast(x), prop.ctx())
11653y = _to_expr_ref(
to_Ast(y), prop.ctx())
def user_prop_diseq(ctx, cb, x, y)
◆ user_prop_eq() def z3py.user_prop_eq ( ctx, cb, x, y )Definition at line 11639 of file z3py.py.
11640prop = _prop_closures.get(ctx)
11643x = _to_expr_ref(
to_Ast(x), prop.ctx())
11644y = _to_expr_ref(
to_Ast(y), prop.ctx())
def user_prop_eq(ctx, cb, x, y)
◆ user_prop_final() def z3py.user_prop_final ( ctx, cb )Definition at line 11632 of file z3py.py.
11633prop = _prop_closures.get(ctx)
def user_prop_final(ctx, cb)
◆ user_prop_fixed() def z3py.user_prop_fixed ( ctx, cb, id, value )Definition at line 11614 of file z3py.py.
11615prop = _prop_closures.get(ctx)
11618id = _to_expr_ref(
to_Ast(id), prop.ctx())
11619value = _to_expr_ref(
to_Ast(value), prop.ctx())
11620prop.fixed(id, value)
def user_prop_fixed(ctx, cb, id, value)
◆ user_prop_fresh() def z3py.user_prop_fresh ( ctx, _new_ctx )Definition at line 11600 of file z3py.py.
11601_prop_closures.set_threaded()
11602prop = _prop_closures.get(ctx)
11609new_prop = prop.fresh(nctx)
11610_prop_closures.set(new_prop.id, new_prop)
void Z3_API Z3_del_context(Z3_context c)
Delete the given logical context.
void Z3_API Z3_set_error_handler(Z3_context c, Z3_error_handler h)
Register a Z3 error handler.
def user_prop_fresh(ctx, _new_ctx)
◆ user_prop_pop() def z3py.user_prop_pop ( ctx, cb, num_scopes )Definition at line 11594 of file z3py.py.
11595prop = _prop_closures.get(ctx)
11597prop.pop(num_scopes)
def user_prop_pop(ctx, cb, num_scopes)
◆ user_prop_push() def z3py.user_prop_push ( ctx, cb )Definition at line 11588 of file z3py.py.
11589prop = _prop_closures.get(ctx)
def user_prop_push(ctx, cb)
◆ Var()Create a Z3 free variable. Free variables are used to create quantified formulas. A free variable with index n is bound when it occurs within the scope of n+1 quantified declarations. >>> Var(0, IntSort()) Var(0) >>> eq(Var(0, IntSort()), Var(0, BoolSort())) False
Definition at line 1488 of file z3py.py.
1489 """Create a Z3 free variable. Free variables are used to create quantified formulas. 1490 A free variable with index n is bound when it occurs within the scope of n+1 quantified 1493 >>> Var(0, IntSort()) 1495 >>> eq(Var(0, IntSort()), Var(0, BoolSort())) 1499_z3_assert(
is_sort(s),
"Z3 sort expected")
1500 return_to_expr_ref(
Z3_mk_bound(s.ctx_ref(), idx, s.ast), s.ctx)
Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty)
Create a variable.
Referenced by RealVar().
◆ When() def z3py.When ( p, t, ctx =None
)
Return a tactic that applies tactic `t` only if probe `p` evaluates to true. Otherwise, it returns the input goal unmodified. >>> t = When(Probe('size') > 2, Tactic('simplify')) >>> x, y = Ints('x y') >>> g = Goal() >>> g.add(x > 0) >>> g.add(y > 0) >>> t(g) [[x > 0, y > 0]] >>> g.add(x == y + 1) >>> t(g) [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
Definition at line 8867 of file z3py.py.
8867 def When(p, t, ctx=None):
8868 """Return a tactic that applies tactic `t` only if probe `p` evaluates to true. 8869 Otherwise, it returns the input goal unmodified. 8871 >>> t = When(Probe('size') > 2, Tactic('simplify')) 8872 >>> x, y = Ints('x y') 8878 >>> g.add(x == y + 1) 8880 [[Not(x <= 0), Not(y <= 0), x == 1 + y]] 8882p = _to_probe(p, ctx)
8883t = _to_tactic(t, ctx)
8884 returnTactic(
Z3_tactic_when(t.ctx.ref(), p.probe, t.tactic), t.ctx)
Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t)
Return a tactic that applies t to a given goal is the probe p evaluates to true. If p evaluates to fa...
◆ With() def z3py.With ( t, * args, ** keys )Return a tactic that applies tactic `t` using the given configuration options. >>> x, y = Ints('x y') >>> t = With(Tactic('simplify'), som=True) >>> t((x + 1)*(y + 2) == 0) [[2*x + y + x*y == -2]]
Definition at line 8524 of file z3py.py.
8524 def With(t, *args, **keys):
8525 """Return a tactic that applies tactic `t` using the given configuration options. 8527 >>> x, y = Ints('x y') 8528 >>> t = With(Tactic('simplify'), som=True) 8529 >>> t((x + 1)*(y + 2) == 0) 8530 [[2*x + y + x*y == -2]] 8532ctx = keys.pop(
"ctx",
None)
8533t = _to_tactic(t, ctx)
Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p)
Return a tactic that applies t using the given set of parameters.
def With(t, *args, **keys)
◆ WithParams() def z3py.WithParams ( t, p )Return a tactic that applies tactic `t` using the given configuration options. >>> x, y = Ints('x y') >>> p = ParamsRef() >>> p.set("som", True) >>> t = WithParams(Tactic('simplify'), p) >>> t((x + 1)*(y + 2) == 0) [[2*x + y + x*y == -2]]
Definition at line 8538 of file z3py.py.
8539 """Return a tactic that applies tactic `t` using the given configuration options. 8541 >>> x, y = Ints('x y') 8543 >>> p.set("som", True) 8544 >>> t = WithParams(Tactic('simplify'), p) 8545 >>> t((x + 1)*(y + 2) == 0) 8546 [[2*x + y + x*y == -2]] 8548t = _to_tactic(t,
None)
◆ Xor() def z3py.Xor ( a, b, ctx =None
)
Create a Z3 Xor expression. >>> p, q = Bools('p q') >>> Xor(p, q) Xor(p, q) >>> simplify(Xor(p, q)) Not(p == q)
Definition at line 1839 of file z3py.py.
1839 def Xor(a, b, ctx=None):
1840 """Create a Z3 Xor expression. 1842 >>> p, q = Bools('p q') 1845 >>> simplify(Xor(p, q)) 1848ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
1852 returnBoolRef(
Z3_mk_xor(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.
Referenced by BoolRef.__xor__().
◆ z3_debug()Definition at line 62 of file z3py.py.
Referenced by Probe.__call__(), QuantifierRef.__getitem__(), ModelRef.__getitem__(), Context.__init__(), Goal.__init__(), ArithRef.__mod__(), ArithRef.__rmod__(), DatatypeSortRef.accessor(), And(), AndThen(), Tactic.apply(), ExprRef.arg(), args2params(), ArraySort(), IntNumRef.as_long(), AtLeast(), AtMost(), BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), SortRef.cast(), BoolSortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), FPSortRef.cast(), Concat(), Const(), DatatypeSortRef.constructor(), Goal.convert_model(), CreateDatatypes(), ExprRef.decl(), Datatype.declare(), Datatype.declare_core(), Default(), describe_probes(), deserialize(), Diff(), Distinct(), EnumSort(), eq(), AstRef.eq(), Ext(), Extract(), FiniteDomainVal(), fpIsPositive(), fpNeg(), FPSort(), fpToFPUnsigned(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), FreshFunction(), Function(), get_as_array_func(), ModelRef.get_interp(), get_map_func(), ModelRef.get_universe(), get_var_index(), If(), AlgebraicNumRef.index(), Intersect(), is_quantifier(), is_sort(), IsInt(), K(), Loop(), Map(), MultiPattern(), QuantifierRef.no_pattern(), ExprRef.num_args(), Option(), Or(), OrElse(), Tactic.param_descrs(), ParOr(), ParThen(), QuantifierRef.pattern(), Plus(), PropagateFunction(), prove(), Range(), RatVal(), RecFunction(), DatatypeSortRef.recognizer(), RepeatBitVec(), Select(), ParamsRef.set(), set_param(), SignExt(), simplify(), solve_using(), Star(), substitute(), substitute_funs(), substitute_vars(), ToInt(), ToReal(), AstRef.translate(), Goal.translate(), ModelRef.translate(), Solver.translate(), Union(), Update(), Var(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and ZeroExt().
◆ z3_error_handler() def z3py.z3_error_handler ( c, e )Definition at line 174 of file z3py.py.
def z3_error_handler(c, e)
◆ ZeroExt() def z3py.ZeroExt ( n, a )Return a bit-vector expression with `n` extra zero-bits. >>> x = BitVec('x', 16) >>> n = ZeroExt(8, x) >>> n.size() 24 >>> n ZeroExt(8, x) >>> n.sort() BitVec(24) >>> v0 = BitVecVal(2, 2) >>> v0 2 >>> v0.size() 2 >>> v = simplify(ZeroExt(6, v0)) >>> v 2 >>> v.size() 8
Definition at line 4439 of file z3py.py.
4440 """Return a bit-vector expression with `n` extra zero-bits. 4442 >>> x = BitVec('x', 16) 4443 >>> n = ZeroExt(8, x) 4450 >>> v0 = BitVecVal(2, 2) 4455 >>> v = simplify(ZeroExt(6, v0)) 4462_z3_assert(_is_int(n),
"First argument must be an integer")
4463_z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4464 returnBitVecRef(
Z3_mk_zero_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)
Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...
◆ sat ◆ unknown ◆ unsat ◆ Z3_DEBUGRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4