Solver API provides methods for implementing the main SMT 2.0 commands: push, pop, check, get-model, etc.
Definition at line 6943 of file z3py.py.
◆ __init__() def __init__ ( self, solver =None
, ctx = None
, logFile = None
)
Definition at line 6949 of file z3py.py.
6949 def__init__(self, solver=None, ctx=None, logFile=None):
6950 assertsolver
is None orctx
is not None 6951self.ctx = _get_ctx(ctx)
6952self.backtrack_level = 4000000000
6957self.solver = solver
6959 iflogFile
is not None:
6960self.set(
"smtlib2_log", logFile)
Z3_solver Z3_API Z3_mk_solver(Z3_context c)
Create a new solver. This solver is a "combined solver" (see combined_solver module) that internally ...
void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s)
Increment the reference counter of the given solver.
◆ __del__()Definition at line 6962 of file z3py.py.
6963 ifself.solver
is not None andself.ctx.ref()
is not None andZ3_solver_dec_ref
is not None:
void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s)
Decrement the reference counter of the given solver.
◆ __copy__()Definition at line 7424 of file z3py.py.
7425 returnself.translate(self.ctx)
◆ __deepcopy__() def __deepcopy__ ( self, memo ={}
)
Definition at line 7427 of file z3py.py.
7427 def__deepcopy__(self, memo={}):
7428 returnself.translate(self.ctx)
◆ __enter__()Definition at line 6966 of file z3py.py.
6966 def__enter__(self):
◆ __exit__() def __exit__ ( self, * exc_info )Definition at line 6970 of file z3py.py.
6970 def__exit__(self, *exc_info):
◆ __iadd__() def __iadd__ ( self, fml )Definition at line 7092 of file z3py.py.
7092 def__iadd__(self, fml):
◆ __repr__()Return a formatted string with all added constraints.
Definition at line 7407 of file z3py.py.
7408 """Return a formatted string with all added constraints.""" 7409 returnobj_to_string(self)
◆ add()Assert constraints into the solver. >>> x = Int('x') >>> s = Solver() >>> s.add(x > 0, x < 2) >>> s [x > 0, x < 2]
Definition at line 7081 of file z3py.py.
7081 defadd(self, *args):
7082 """Assert constraints into the solver. 7086 >>> s.add(x > 0, x < 2) 7090self.assert_exprs(*args)
Referenced by Solver.__iadd__(), Fixedpoint.__iadd__(), and Optimize.__iadd__().
◆ append() def append ( self, * args )Assert constraints into the solver. >>> x = Int('x') >>> s = Solver() >>> s.append(x > 0, x < 2) >>> s [x > 0, x < 2]
Definition at line 7096 of file z3py.py.
7096 defappend(self, *args):
7097 """Assert constraints into the solver. 7101 >>> s.append(x > 0, x < 2) 7105self.assert_exprs(*args)
◆ assert_and_track() def assert_and_track ( self, a, p )Assert constraint `a` and track it in the unsat core using the Boolean constant `p`. If `p` is a string, it will be automatically converted into a Boolean constant. >>> x = Int('x') >>> p3 = Bool('p3') >>> s = Solver() >>> s.set(unsat_core=True) >>> s.assert_and_track(x > 0, 'p1') >>> s.assert_and_track(x != 1, 'p2') >>> s.assert_and_track(x < 0, p3) >>> print(s.check()) unsat >>> c = s.unsat_core() >>> len(c) 2 >>> Bool('p1') in c True >>> Bool('p2') in c False >>> p3 in c True
Definition at line 7118 of file z3py.py.
7118 defassert_and_track(self, a, p):
7119 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`. 7121 If `p` is a string, it will be automatically converted into a Boolean constant. 7126 >>> s.set(unsat_core=True) 7127 >>> s.assert_and_track(x > 0, 'p1') 7128 >>> s.assert_and_track(x != 1, 'p2') 7129 >>> s.assert_and_track(x < 0, p3) 7130 >>> print(s.check()) 7132 >>> c = s.unsat_core() 7142 ifisinstance(p, str):
7143p =
Bool(p, self.ctx)
7144_z3_assert(isinstance(a, BoolRef),
"Boolean expression expected")
7145_z3_assert(isinstance(p, BoolRef)
and is_const(p),
"Boolean expression expected")
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p)
Assert a constraint a into the solver, and track it (in the unsat) core using the Boolean constant p.
◆ assert_exprs() def assert_exprs ( self, * args )Assert constraints into the solver. >>> x = Int('x') >>> s = Solver() >>> s.assert_exprs(x > 0, x < 2) >>> s [x > 0, x < 2]
Definition at line 7062 of file z3py.py.
7062 defassert_exprs(self, *args):
7063 """Assert constraints into the solver. 7067 >>> s.assert_exprs(x > 0, x < 2) 7071args = _get_args(args)
7074 ifisinstance(arg, Goal)
orisinstance(arg, AstVector):
void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a)
Assert a constraint into the solver.
Referenced by Goal.add(), Solver.add(), Fixedpoint.add(), Optimize.add(), Goal.append(), Solver.append(), Fixedpoint.append(), Goal.insert(), Solver.insert(), and Fixedpoint.insert().
◆ assertions()Return an AST vector containing all added constraints. >>> s = Solver() >>> s.assertions() [] >>> a = Int('a') >>> s.add(a > 0) >>> s.add(a < 10) >>> s.assertions() [a > 0, a < 10]
Definition at line 7324 of file z3py.py.
7324 defassertions(self):
7325 """Return an AST vector containing all added constraints.Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s)
Return the set of asserted formulas on the solver.
Referenced by Solver.to_smt2().
◆ check() def check ( self, * assumptions )Check whether the assertions in the given solver plus the optional assumptions are consistent or not. >>> x = Int('x') >>> s = Solver() >>> s.check() sat >>> s.add(x > 0, x < 2) >>> s.check() sat >>> s.model().eval(x) 1 >>> s.add(x < 1) >>> s.check() unsat >>> s.reset() >>> s.add(2**x == 4) >>> s.check() unknown
Definition at line 7148 of file z3py.py.
7148 defcheck(self, *assumptions):
7149 """Check whether the assertions in the given solver plus the optional assumptions are consistent or not. 7155 >>> s.add(x > 0, x < 2) 7158 >>> s.model().eval(x) 7164 >>> s.add(2**x == 4) 7169assumptions = _get_args(assumptions)
7170num = len(assumptions)
7171_assumptions = (Ast * num)()
7172 fori
in range(num):
7173_assumptions[i] = s.cast(assumptions[i]).as_ast()
7175 returnCheckSatResult(r)
Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[])
Check whether the assertions in the given solver and optional assumptions are consistent or not.
expr range(expr const &lo, expr const &hi)
◆ consequences() def consequences ( self, assumptions, variables )Determine fixed values for the variables based on the solver state and assumptions. >>> s = Solver() >>> a, b, c, d = Bools('a b c d') >>> s.add(Implies(a,b), Implies(b, c)) >>> s.consequences([a],[b,c,d]) (sat, [Implies(a, b), Implies(a, c)]) >>> s.consequences([Not(c),d],[a,b,c,d]) (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
Definition at line 7239 of file z3py.py.
7239 defconsequences(self, assumptions, variables):
7240 """Determine fixed values for the variables based on the solver state and assumptions. 7242 >>> a, b, c, d = Bools('a b c d') 7243 >>> s.add(Implies(a,b), Implies(b, c)) 7244 >>> s.consequences([a],[b,c,d]) 7245 (sat, [Implies(a, b), Implies(a, c)]) 7246 >>> s.consequences([Not(c),d],[a,b,c,d]) 7247 (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))]) 7249 ifisinstance(assumptions, list):
7250_asms = AstVector(
None, self.ctx)
7251 fora
inassumptions:
7254 ifisinstance(variables, list):
7255_vars = AstVector(
None, self.ctx)
7259_z3_assert(isinstance(assumptions, AstVector),
"ast vector expected")
7260_z3_assert(isinstance(variables, AstVector),
"ast vector expected")
7261consequences = AstVector(
None, self.ctx)
7263variables.vector, consequences.vector)
7264sz = len(consequences)
7265consequences = [consequences[i]
fori
in range(sz)]
7266 returnCheckSatResult(r), consequences
Z3_lbool Z3_API Z3_solver_get_consequences(Z3_context c, Z3_solver s, Z3_ast_vector assumptions, Z3_ast_vector variables, Z3_ast_vector consequences)
retrieve consequences from solver that determine values of the supplied function symbols.
◆ cube() def cube ( self, vars =None
)
Get set of cubes The method takes an optional set of variables that restrict which variables may be used as a starting point for cubing. If vars is not None, then the first case split is based on a variable in this set.
Definition at line 7276 of file z3py.py.
7276 defcube(self, vars=None):
7278 The method takes an optional set of variables that restrict which 7279 variables may be used as a starting point for cubing. 7280 If vars is not None, then the first case split is based on a variable in 7283self.cube_vs = AstVector(
None, self.ctx)
7284 ifvars
is not None:
7286self.cube_vs.push(v)
7288lvl = self.backtrack_level
7289self.backtrack_level = 4000000000
7290r = AstVector(
Z3_solver_cube(self.ctx.ref(), self.solver, self.cube_vs.vector, lvl), self.ctx)
7291 if(len(r) == 1
and is_false(r[0])):
Z3_ast_vector Z3_API Z3_solver_cube(Z3_context c, Z3_solver s, Z3_ast_vector vars, unsigned backtrack_level)
extract a next cube for a solver. The last cube is the constant true or false. The number of (non-con...
◆ cube_vars()Access the set of variables that were touched by the most recently generated cube. This set of variables can be used as a starting point for additional cubes. The idea is that variables that appear in clauses that are reduced by the most recent cube are likely more useful to cube on.
Definition at line 7297 of file z3py.py.
7297 defcube_vars(self):
7298 """Access the set of variables that were touched by the most recently generated cube. 7299 This set of variables can be used as a starting point for additional cubes. 7300 The idea is that variables that appear in clauses that are reduced by the most recent 7301 cube are likely more useful to cube on.""" ◆ dimacs() def dimacs ( self, include_names =True
)
Return a textual representation of the solver in DIMACS format.
Definition at line 7442 of file z3py.py.
7442 defdimacs(self, include_names=True):
7443 """Return a textual representation of the solver in DIMACS format."""Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s, bool include_names)
Convert a solver into a DIMACS formatted string.
◆ from_file() def from_file ( self, filename )Parse assertions from a file
Definition at line 7268 of file z3py.py.
7268 deffrom_file(self, filename):
7269 """Parse assertions from a file"""void Z3_API Z3_solver_from_file(Z3_context c, Z3_solver s, Z3_string file_name)
load solver assertions from a file.
◆ from_string() def from_string ( self, s )Parse assertions from a string
Definition at line 7272 of file z3py.py.
7272 deffrom_string(self, s):
7273 """Parse assertions from a string"""void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string str)
load solver assertions from a string.
◆ help()Display a string describing all available options.
Definition at line 7399 of file z3py.py.
7400 """Display a string describing all available options."""Z3_string Z3_API Z3_solver_get_help(Z3_context c, Z3_solver s)
Return a string describing all solver available parameters.
◆ import_model_converter() def import_model_converter ( self, other )Import model converter from other into the current solver
Definition at line 7196 of file z3py.py.
7196 defimport_model_converter(self, other):
7197 """Import model converter from other into the current solver"""void Z3_API Z3_solver_import_model_converter(Z3_context ctx, Z3_solver src, Z3_solver dst)
Ad-hoc method for importing model conversion from solver.
◆ insert() def insert ( self, * args )Assert constraints into the solver. >>> x = Int('x') >>> s = Solver() >>> s.insert(x > 0, x < 2) >>> s [x > 0, x < 2]
Definition at line 7107 of file z3py.py.
7107 definsert(self, *args):
7108 """Assert constraints into the solver. 7112 >>> s.insert(x > 0, x < 2) 7116self.assert_exprs(*args)
◆ interrupt()Interrupt the execution of the solver object. Remarks: This ensures that the interrupt applies only to the given solver object and it applies only if it is running.
Definition at line 7200 of file z3py.py.
7200 definterrupt(self):
7201 """Interrupt the execution of the solver object. 7202 Remarks: This ensures that the interrupt applies only 7203 to the given solver object and it applies only if it is running.void Z3_API Z3_solver_interrupt(Z3_context c, Z3_solver s)
Solver local interrupt. Normally you should use Z3_interrupt to cancel solvers because only one solve...
◆ model()Return a model for the last `check()`. This function raises an exception if a model is not available (e.g., last `check()` returned unsat). >>> s = Solver() >>> a = Int('a') >>> s.add(a + 2 == 0) >>> s.check() sat >>> s.model() [a = -2]
Definition at line 7177 of file z3py.py.
7178 """Return a model for the last `check()`. 7180 This function raises an exception if 7181 a model is not available (e.g., last `check()` returned unsat). 7185 >>> s.add(a + 2 == 0) 7194 raiseZ3Exception(
"model is not available")
Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s)
Retrieve the model for the last Z3_solver_check or Z3_solver_check_assumptions.
Referenced by ModelRef.__del__(), ModelRef.__getitem__(), ModelRef.__len__(), ModelRef.decls(), ModelRef.eval(), ModelRef.get_interp(), ModelRef.get_sort(), ModelRef.get_universe(), ModelRef.num_sorts(), ModelRef.sexpr(), FuncInterp.translate(), ModelRef.translate(), and ModelRef.update_value().
◆ next()Definition at line 7312 of file z3py.py.
7313t = _py2expr(t, self.ctx)
7314 """Retrieve congruence closure sibling of the term t relative to the current search state 7315 The function primarily works for SimpleSolver. Terms and variables that are 7316 eliminated during pre-processing are not visible to the congruence closure.Z3_ast Z3_API Z3_solver_congruence_next(Z3_context c, Z3_solver s, Z3_ast a)
retrieve the next expression in the congruence class. The set of congruent siblings form a cyclic lis...
◆ non_units()Return an AST vector containing all atomic formulas in solver state that are not units.
Definition at line 7343 of file z3py.py.
7343 defnon_units(self):
7344 """Return an AST vector containing all atomic formulas in solver state that are not units.Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s)
Return the set of non units in the solver state.
◆ num_scopes()Return the current number of backtracking points. >>> s = Solver() >>> s.num_scopes() 0 >>> s.push() >>> s.num_scopes() 1 >>> s.push() >>> s.num_scopes() 2 >>> s.pop() >>> s.num_scopes() 1
Definition at line 7030 of file z3py.py.
7030 defnum_scopes(self):
7031 """Return the current number of backtracking points.unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s)
Return the number of backtracking points.
◆ param_descrs() def param_descrs ( self )Return the parameter description set.
Definition at line 7403 of file z3py.py.
7403 defparam_descrs(self):
7404 """Return the parameter description set."""Z3_param_descrs Z3_API Z3_solver_get_param_descrs(Z3_context c, Z3_solver s)
Return the parameter description set for the given solver object.
◆ pop() def pop ( self, num =1
)
Backtrack \\c num backtracking points. >>> x = Int('x') >>> s = Solver() >>> s.add(x > 0) >>> s [x > 0] >>> s.push() >>> s.add(x < 1) >>> s [x > 0, x < 1] >>> s.check() unsat >>> s.pop() >>> s.check() sat >>> s [x > 0]
Definition at line 7008 of file z3py.py.
7008 defpop(self, num=1):
7009 """Backtrack \\c num backtracking points.void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n)
Backtrack n backtracking points.
Referenced by Solver.__exit__().
◆ proof()Return a proof for the last `check()`. Proof construction must be enabled.
Definition at line 7320 of file z3py.py.
7321 """Return a proof for the last `check()`. Proof construction must be enabled."""Z3_ast Z3_API Z3_solver_get_proof(Z3_context c, Z3_solver s)
Retrieve the proof for the last Z3_solver_check or Z3_solver_check_assumptions.
◆ push()Create a backtracking point. >>> x = Int('x') >>> s = Solver() >>> s.add(x > 0) >>> s [x > 0] >>> s.push() >>> s.add(x < 1) >>> s [x > 0, x < 1] >>> s.check() unsat >>> s.pop() >>> s.check() sat >>> s [x > 0]
Definition at line 6986 of file z3py.py.
6987 """Create a backtracking point.void Z3_API Z3_solver_push(Z3_context c, Z3_solver s)
Create a backtracking point.
Referenced by Solver.__enter__().
◆ reason_unknown() def reason_unknown ( self )Return a string describing why the last `check()` returned `unknown`. >>> x = Int('x') >>> s = SimpleSolver() >>> s.add(2**x == 4) >>> s.check() unknown >>> s.reason_unknown() '(incomplete (theory arithmetic))'
Definition at line 7386 of file z3py.py.
7386 defreason_unknown(self):
7387 """Return a string describing why the last `check()` returned `unknown`. 7390 >>> s = SimpleSolver() 7391 >>> s.add(2**x == 4) 7394 >>> s.reason_unknown() 7395 '(incomplete (theory arithmetic))'Z3_string Z3_API Z3_solver_get_reason_unknown(Z3_context c, Z3_solver s)
Return a brief justification for an "unknown" result (i.e., Z3_L_UNDEF) for the commands Z3_solver_ch...
◆ reset()Remove all asserted constraints and backtracking points created using `push()`. >>> x = Int('x') >>> s = Solver() >>> s.add(x > 0) >>> s [x > 0] >>> s.reset() >>> s []
Definition at line 7048 of file z3py.py.
7049 """Remove all asserted constraints and backtracking points created using `push()`.void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s)
Remove all assertions from the solver.
◆ root()Definition at line 7304 of file z3py.py.
7305t = _py2expr(t, self.ctx)
7306 """Retrieve congruence closure root of the term t relative to the current search state 7307 The function primarily works for SimpleSolver. Terms and variables that are 7308 eliminated during pre-processing are not visible to the congruence closure.Z3_ast Z3_API Z3_solver_congruence_root(Z3_context c, Z3_solver s, Z3_ast a)
retrieve the congruence closure root of an expression. The root is retrieved relative to the state wh...
◆ set() def set ( self, * args, ** keys )Set a configuration option. The method `help()` return a string containing all available options. >>> s = Solver() >>> # The option MBQI can be set using three different approaches. >>> s.set(mbqi=True) >>> s.set('MBQI', True) >>> s.set(':mbqi', True)
Definition at line 6973 of file z3py.py.
6973 defset(self, *args, **keys):
6974 """Set a configuration option. 6975 The method `help()` return a string containing all available options. 6978 >>> # The option MBQI can be set using three different approaches. 6979 >>> s.set(mbqi=True) 6980 >>> s.set('MBQI', True) 6981 >>> s.set(':mbqi', True)void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p)
Set the given solver using the given parameters.
def args2params(arguments, keywords, ctx=None)
◆ set_initial_value() def set_initial_value ( self, var, value )initialize the solver's state by setting the initial value of var to value
Definition at line 7356 of file z3py.py.
7356 defset_initial_value(self, var, value):
7357 """initialize the solver's state by setting the initial value of var to value 7360value = s.cast(value)
void Z3_API Z3_solver_set_initial_value(Z3_context c, Z3_solver s, Z3_ast v, Z3_ast val)
provide an initialization hint to the solver. The initialization hint is used to calibrate an initial...
◆ sexpr()Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format. >>> x = Int('x') >>> s = Solver() >>> s.add(x > 0) >>> s.add(x < 2) >>> r = s.sexpr()
Definition at line 7430 of file z3py.py.
7431 """Return a formatted string (in Lisp-like format) with all added constraints. 7432 We say the string is in s-expression format.Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s)
Convert a solver into a string.
Referenced by Fixedpoint.__repr__(), and Optimize.__repr__().
◆ statistics()Return statistics for the last `check()`. >>> s = SimpleSolver() >>> x = Int('x') >>> s.add(x > 0) >>> s.check() sat >>> st = s.statistics() >>> st.get_key_value('final checks') 1 >>> len(st) > 0 True >>> st[0] != 0 True
Definition at line 7368 of file z3py.py.
7368 defstatistics(self):
7369 """Return statistics for the last `check()`. 7371 >>> s = SimpleSolver() 7376 >>> st = s.statistics() 7377 >>> st.get_key_value('final checks')Z3_stats Z3_API Z3_solver_get_statistics(Z3_context c, Z3_solver s)
Return statistics for the given solver.
◆ to_smt2()return SMTLIB2 formatted benchmark for solver's assertions
Definition at line 7446 of file z3py.py.
7447 """return SMTLIB2 formatted benchmark for solver's assertions""" 7448es = self.assertions()
7454 fori
in range(sz1):
7455v[i] = es[i].as_ast()
7457e = es[sz1].as_ast()
7459e =
BoolVal(
True, self.ctx).as_ast()
7461self.ctx.ref(),
"benchmark generated from python API",
"",
"unknown",
"", sz1, v, e,
Z3_string Z3_API Z3_benchmark_to_smtlib_string(Z3_context c, Z3_string name, Z3_string logic, Z3_string status, Z3_string attributes, unsigned num_assumptions, Z3_ast const assumptions[], Z3_ast formula)
Convert the given benchmark into SMT-LIB formatted string.
def BoolVal(val, ctx=None)
◆ trail()Return trail of the solver state after a check() call.
Definition at line 7363 of file z3py.py.
7364 """Return trail of the solver state after a check() call.Z3_ast_vector Z3_API Z3_solver_get_trail(Z3_context c, Z3_solver s)
Return the trail modulo model conversion, in order of decision level The decision level can be retrie...
Referenced by Solver.trail_levels().
◆ trail_levels() def trail_levels ( self )Return trail and decision levels of the solver state after a check() call.
Definition at line 7348 of file z3py.py.
7348 deftrail_levels(self):
7349 """Return trail and decision levels of the solver state after a check() call. 7351trail = self.trail()
7352levels = (ctypes.c_uint * len(trail))()
7354 returntrail, levels
void Z3_API Z3_solver_get_levels(Z3_context c, Z3_solver s, Z3_ast_vector literals, unsigned sz, unsigned levels[])
retrieve the decision depth of Boolean literals (variables or their negations). Assumes a check-sat c...
◆ translate() def translate ( self, target )Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`. >>> c1 = Context() >>> c2 = Context() >>> s1 = Solver(ctx=c1) >>> s2 = s1.translate(c2)
Definition at line 7411 of file z3py.py.
7411 deftranslate(self, target):
7412 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`. 7416 >>> s1 = Solver(ctx=c1) 7417 >>> s2 = s1.translate(c2) 7420_z3_assert(isinstance(target, Context),
"argument must be a Z3 context")
7422 returnSolver(solver, target)
Z3_solver Z3_API Z3_solver_translate(Z3_context source, Z3_solver s, Z3_context target)
Copy a solver s from the context source to the context target.
Referenced by AstRef.__copy__(), Goal.__copy__(), AstVector.__copy__(), FuncInterp.__copy__(), ModelRef.__copy__(), Solver.__copy__(), Goal.__deepcopy__(), AstVector.__deepcopy__(), FuncInterp.__deepcopy__(), ModelRef.__deepcopy__(), and Solver.__deepcopy__().
◆ units()Return an AST vector containing all currently inferred units.
Definition at line 7338 of file z3py.py.
7339 """Return an AST vector containing all currently inferred units.Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s)
Return the set of units modulo model conversion.
◆ unsat_core()Return a subset (as an AST vector) of the assumptions provided to the last check(). These are the assumptions Z3 used in the unsatisfiability proof. Assumptions are available in Z3. They are used to extract unsatisfiable cores. They may be also used to "retract" assumptions. Note that, assumptions are not really "soft constraints", but they can be used to implement them. >>> p1, p2, p3 = Bools('p1 p2 p3') >>> x, y = Ints('x y') >>> s = Solver() >>> s.add(Implies(p1, x > 0)) >>> s.add(Implies(p2, y > x)) >>> s.add(Implies(p2, y < 1)) >>> s.add(Implies(p3, y > -3)) >>> s.check(p1, p2, p3) unsat >>> core = s.unsat_core() >>> len(core) 2 >>> p1 in core True >>> p2 in core True >>> p3 in core False >>> # "Retracting" p2 >>> s.check(p1, p3) sat
Definition at line 7207 of file z3py.py.
7207 defunsat_core(self):
7208 """Return a subset (as an AST vector) of the assumptions provided to the last check(). 7210 These are the assumptions Z3 used in the unsatisfiability proof. 7211 Assumptions are available in Z3. They are used to extract unsatisfiable cores. 7212 They may be also used to "retract" assumptions. Note that, assumptions are not really 7213 "soft constraints", but they can be used to implement them. 7215 >>> p1, p2, p3 = Bools('p1 p2 p3') 7216 >>> x, y = Ints('x y') 7218 >>> s.add(Implies(p1, x > 0)) 7219 >>> s.add(Implies(p2, y > x)) 7220 >>> s.add(Implies(p2, y < 1)) 7221 >>> s.add(Implies(p3, y > -3)) 7222 >>> s.check(p1, p2, p3) 7224 >>> core = s.unsat_core() 7233 >>> # "Retracting" p2Z3_ast_vector Z3_API Z3_solver_get_unsat_core(Z3_context c, Z3_solver s)
Retrieve the unsat core for the last Z3_solver_check_assumptions The unsat core is a subset of the as...
◆ backtrack_level ◆ ctxDefinition at line 6951 of file z3py.py.
Referenced by ArithRef.__add__(), BitVecRef.__add__(), FPRef.__add__(), BitVecRef.__and__(), FuncDeclRef.__call__(), Probe.__call__(), AstMap.__contains__(), AstRef.__copy__(), Goal.__copy__(), AstVector.__copy__(), FuncInterp.__copy__(), ModelRef.__copy__(), Solver.__copy__(), AstRef.__deepcopy__(), Datatype.__deepcopy__(), ParamsRef.__deepcopy__(), ParamDescrsRef.__deepcopy__(), Goal.__deepcopy__(), AstVector.__deepcopy__(), AstMap.__deepcopy__(), FuncEntry.__deepcopy__(), FuncInterp.__deepcopy__(), ModelRef.__deepcopy__(), Statistics.__deepcopy__(), Solver.__deepcopy__(), Fixedpoint.__deepcopy__(), Optimize.__deepcopy__(), ApplyResult.__deepcopy__(), Simplifier.__deepcopy__(), Tactic.__deepcopy__(), Probe.__deepcopy__(), Context.__del__(), AstRef.__del__(), ScopedConstructor.__del__(), ScopedConstructorList.__del__(), ParamsRef.__del__(), ParamDescrsRef.__del__(), Goal.__del__(), AstVector.__del__(), AstMap.__del__(), FuncEntry.__del__(), FuncInterp.__del__(), ModelRef.__del__(), Statistics.__del__(), Solver.__del__(), Fixedpoint.__del__(), Optimize.__del__(), ApplyResult.__del__(), Simplifier.__del__(), Tactic.__del__(), Probe.__del__(), ParserContext.__del__(), ArithRef.__div__(), BitVecRef.__div__(), FPRef.__div__(), ExprRef.__eq__(), Probe.__eq__(), ArithRef.__ge__(), BitVecRef.__ge__(), Probe.__ge__(), FPRef.__ge__(), SeqRef.__ge__(), AstVector.__getitem__(), SeqRef.__getitem__(), ModelRef.__getitem__(), Statistics.__getitem__(), ApplyResult.__getitem__(), AstMap.__getitem__(), ArithRef.__gt__(), BitVecRef.__gt__(), Probe.__gt__(), FPRef.__gt__(), SeqRef.__gt__(), BitVecRef.__invert__(), ArithRef.__le__(), BitVecRef.__le__(), Probe.__le__(), FPRef.__le__(), SeqRef.__le__(), CharRef.__le__(), AstVector.__len__(), AstMap.__len__(), ModelRef.__len__(), Statistics.__len__(), ApplyResult.__len__(), BitVecRef.__lshift__(), ArithRef.__lt__(), BitVecRef.__lt__(), Probe.__lt__(), FPRef.__lt__(), SeqRef.__lt__(), ArithRef.__mod__(), BitVecRef.__mod__(), BoolRef.__mul__(), ArithRef.__mul__(), BitVecRef.__mul__(), FPRef.__mul__(), ExprRef.__ne__(), Probe.__ne__(), ArithRef.__neg__(), BitVecRef.__neg__(), BitVecRef.__or__(), ArithRef.__pow__(), ArithRef.__radd__(), BitVecRef.__radd__(), FPRef.__radd__(), BitVecRef.__rand__(), ArithRef.__rdiv__(), BitVecRef.__rdiv__(), FPRef.__rdiv__(), ParamsRef.__repr__(), ParamDescrsRef.__repr__(), AstMap.__repr__(), Statistics.__repr__(), BitVecRef.__rlshift__(), ArithRef.__rmod__(), BitVecRef.__rmod__(), ArithRef.__rmul__(), BitVecRef.__rmul__(), FPRef.__rmul__(), BitVecRef.__ror__(), ArithRef.__rpow__(), BitVecRef.__rrshift__(), BitVecRef.__rshift__(), ArithRef.__rsub__(), BitVecRef.__rsub__(), FPRef.__rsub__(), BitVecRef.__rxor__(), AstVector.__setitem__(), AstMap.__setitem__(), ArithRef.__sub__(), BitVecRef.__sub__(), FPRef.__sub__(), BitVecRef.__xor__(), DatatypeSortRef.accessor(), Simplifier.add(), Fixedpoint.add_cover(), ParserContext.add_decl(), Fixedpoint.add_rule(), Optimize.add_soft(), ParserContext.add_sort(), Tactic.apply(), AlgebraicNumRef.approx(), ExprRef.arg(), FuncEntry.arg_value(), FuncInterp.arity(), Goal.as_expr(), ApplyResult.as_expr(), FPNumRef.as_string(), Solver.assert_and_track(), Optimize.assert_and_track(), Goal.assert_exprs(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Solver.assertions(), Optimize.assertions(), SeqRef.at(), SeqSortRef.basis(), ReSortRef.basis(), QuantifierRef.body(), BoolSortRef.cast(), Solver.check(), Optimize.check(), UserPropagateBase.conflict(), Solver.consequences(), DatatypeSortRef.constructor(), Goal.convert_model(), AstRef.ctx_ref(), UserPropagateBase.ctx_ref(), ExprRef.decl(), ModelRef.decls(), ArrayRef.default(), RatNumRef.denominator(), Goal.depth(), Goal.dimacs(), Solver.dimacs(), ArraySortRef.domain(), FuncDeclRef.domain(), ArraySortRef.domain_n(), FuncInterp.else_value(), FuncInterp.entry(), AstMap.erase(), ModelRef.eval(), FPNumRef.exponent(), FPNumRef.exponent_as_bv(), FPNumRef.exponent_as_long(), Solver.from_file(), Optimize.from_file(), Solver.from_string(), Optimize.from_string(), ParserContext.from_string(), Goal.get(), Fixedpoint.get_answer(), Fixedpoint.get_assertions(), Fixedpoint.get_cover_delta(), ParamDescrsRef.get_documentation(), Fixedpoint.get_ground_sat_answer(), ModelRef.get_interp(), Statistics.get_key_value(), ParamDescrsRef.get_kind(), ParamDescrsRef.get_name(), Fixedpoint.get_num_levels(), Fixedpoint.get_rule_names_along_trace(), Fixedpoint.get_rules(), Fixedpoint.get_rules_along_trace(), ModelRef.get_sort(), ModelRef.get_universe(), Solver.help(), Fixedpoint.help(), Optimize.help(), Simplifier.help(), Tactic.help(), Solver.import_model_converter(), Goal.inconsistent(), Solver.interrupt(), CharRef.is_digit(), FPNumRef.isInf(), FPNumRef.isNaN(), FPNumRef.isNegative(), FPNumRef.isNormal(), FPNumRef.isPositive(), FPNumRef.isSubnormal(), FPNumRef.isZero(), AstMap.keys(), Statistics.keys(), SortRef.kind(), Optimize.maximize(), Optimize.minimize(), Solver.model(), Optimize.model(), SortRef.name(), FuncDeclRef.name(), Solver.next(), QuantifierRef.no_pattern(), Solver.non_units(), FuncEntry.num_args(), FuncInterp.num_entries(), Solver.num_scopes(), ModelRef.num_sorts(), RatNumRef.numerator(), Optimize.objectives(), Solver.param_descrs(), Fixedpoint.param_descrs(), Optimize.param_descrs(), Simplifier.param_descrs(), Tactic.param_descrs(), FuncDeclRef.params(), Fixedpoint.parse_file(), Fixedpoint.parse_string(), QuantifierRef.pattern(), AlgebraicNumRef.poly(), Optimize.pop(), Solver.pop(), Goal.prec(), Solver.proof(), Solver.push(), Optimize.push(), AstVector.push(), QuantifierRef.qid(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), FuncDeclRef.range(), ArraySortRef.range(), Solver.reason_unknown(), Fixedpoint.reason_unknown(), Optimize.reason_unknown(), DatatypeSortRef.recognizer(), Context.ref(), Fixedpoint.register_relation(), AstMap.reset(), Solver.reset(), AstVector.resize(), Solver.root(), Solver.set(), Fixedpoint.set(), Optimize.set(), ParamsRef.set(), Solver.set_initial_value(), Optimize.set_initial_value(), Optimize.set_on_model(), Fixedpoint.set_predicate_representation(), Goal.sexpr(), AstVector.sexpr(), ModelRef.sexpr(), Solver.sexpr(), Fixedpoint.sexpr(), Optimize.sexpr(), ApplyResult.sexpr(), FPNumRef.sign(), FPNumRef.sign_as_bv(), FPNumRef.significand(), FPNumRef.significand_as_bv(), FPNumRef.significand_as_long(), ParamDescrsRef.size(), Goal.size(), QuantifierRef.skolem_id(), Tactic.solver(), ExprRef.sort(), BoolRef.sort(), QuantifierRef.sort(), ArithRef.sort(), BitVecRef.sort(), ArrayRef.sort(), DatatypeRef.sort(), FiniteDomainRef.sort(), FPRef.sort(), SeqRef.sort(), Solver.statistics(), Fixedpoint.statistics(), Optimize.statistics(), CharRef.to_bv(), CharRef.to_int(), Solver.to_smt2(), Fixedpoint.to_string(), Solver.trail(), Solver.trail_levels(), AstVector.translate(), FuncInterp.translate(), AstRef.translate(), Goal.translate(), ModelRef.translate(), Solver.translate(), Solver.units(), Solver.unsat_core(), Optimize.unsat_core(), Fixedpoint.update_rule(), Simplifier.using_params(), ParamsRef.validate(), FuncEntry.value(), QuantifierRef.var_name(), and QuantifierRef.var_sort().
◆ cube_vs ◆ solverDefinition at line 6953 of file z3py.py.
Referenced by Solver.__del__(), UserPropagateBase.add(), UserPropagateBase.add_created(), UserPropagateBase.add_decide(), UserPropagateBase.add_diseq(), UserPropagateBase.add_eq(), UserPropagateBase.add_final(), UserPropagateBase.add_fixed(), Solver.assert_and_track(), Solver.assert_exprs(), Solver.assertions(), Solver.check(), Solver.consequences(), UserPropagateBase.ctx(), Solver.dimacs(), Solver.from_file(), Solver.from_string(), Solver.help(), Solver.import_model_converter(), Solver.interrupt(), Solver.model(), Solver.next(), Solver.non_units(), Solver.num_scopes(), Solver.param_descrs(), Solver.pop(), Solver.proof(), Solver.push(), Solver.reason_unknown(), Solver.reset(), Solver.root(), Solver.set(), Solver.set_initial_value(), Solver.sexpr(), Solver.statistics(), Solver.trail(), Solver.trail_levels(), Solver.translate(), Solver.units(), and Solver.unsat_core().
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4