This section is not normative.
CSS 2.1 defined four layout modes — algorithms which determine the size and position of boxes based on their relationships with their sibling and ancestor boxes:
block layout, designed for laying out documents
inline layout, designed for laying out text
table layout, designed for laying out 2D data in a tabular format
positioned layout, designed for very explicit positioning without much regard for other elements in the document
This module introduces a new layout mode, flex layout, which is designed for laying out more complex applications and webpages.
1.1. OverviewThis section is not normative.
Flex layout is superficially similar to block layout. It lacks many of the more complex text- or document-centric properties that can be used in block layout, such as floats and columns. In return it gains simple and powerful tools for distributing space and aligning content in ways that web apps and complex web pages often need. The contents of a flex container:
can be laid out in any flow direction (leftwards, rightwards, downwards, or even upwards!)
can have their display order reversed or rearranged at the style layer (i.e., visual order can be independent of source and speech order)
can be laid out linearly along a single (main) axis or wrapped into multiple lines along a secondary (cross) axis
can “flex” their sizes to respond to the available space
can be aligned with respect to their container or each other on the secondary (cross)
can be dynamically collapsed or uncollapsed along the main axis while preserving the container’s cross size
Here’s an example of a catalog where each item has a title, a photo, a description, and a purchase button. The designer’s intention is that each entry has the same overall size, that the photo be above the text, and that the purchase buttons aligned at the bottom, regardless of the length of the item’s description. Flex layout makes many aspects of this design easy:
The catalog uses flex layout to lay out rows of items horizontally, and to ensure that items within a row are all equal-height. Each entry is then itself a column flex container, laying out its contents vertically.
Within each entry, the source document content is ordered logically with the title first, followed by the description and the photo. This provides a sensible ordering for speech rendering and in non-CSS browsers. For a more compelling visual presentation, however, order is used to pull the image up from later in the content to the top, and align-self is used to center it horizontally.
An auto margin above the purchase button forces it to the bottom within each entry box, regardless of the height of that item’s description.
#deals { display: flex; /* Flex layout so items have equal height */ flex-flow: row wrap; /* Allow items to wrap into multiple lines */ } .sale-item { display: flex; /* Lay out each item using flex layout */ flex-flow: column; /* Lay out item’s contents vertically */ } .sale-item > img { order: -1; /* Shift image before other content (in visual order) */ align-self: center; /* Center the image cross-wise (horizontally) */ } .sale-item > button { margin-top: auto; /* Auto top margin pushes button to bottom */ }
<section id="deals"> <section class="sale-item"> <h1>Computer Starter Kit</h1> <p>This is the best computer money can buy, if you don’t have much money. <ul> <li>Computer <li>Monitor <li>Keyboard <li>Mouse </ul> <img src="images/computer.jpg" alt="You get: a white computer with matching peripherals."> <button>BUY NOW</button> </section> <section class="sale-item"> … </section> … </section>Computer Starter Kit
This is the best computer money can buy, if you don’t have much money.
Only capable of printing ASCII art.
This module extends the definition of the display property [CSS21], adding a new block-level and new inline-level display type, and defining a new type of formatting context along with properties to control its layout. None of the properties defined in this module apply to the ::first-line or ::first-letter pseudo-elements.
The CSS Box Alignment Module extends and supercedes the definitions of the alignment properties (justify-content, align-items, align-self, align-content) introduced here.
2. Flex Layout Box Model and TerminologyA flex container is the box generated by an element with a computed display of flex or inline-flex. In-flow children of a flex container are called flex items and are laid out using the flex layout model.
Unlike block and inline layout, whose layout calculations are biased to the block and inline flow directions, flex layout is biased to the flex directions. To make it easier to talk about flex layout, this section defines a set of flex flow–relative terms. The flex-flow value and the writing mode determine how these terms map to physical directions (top/right/bottom/left), axes (vertical/horizontal), and sizes (width/height).
An illustration of the various directions and sizing terms as applied to a row flex container.Additional sizing terminology used in this specification is defined in CSS Intrinsic and Extrinsic Sizing. [CSS-SIZING-3]
3. Flex Containers: the flex and inline-flex display valuesA flex container establishes a new flex formatting context for its contents. This is the same as establishing a block formatting context, except that flex layout is used instead of block layout. For example, floats do not intrude into the flex container, and the flex container’s margins do not collapse with the margins of its contents. Flex containers form a containing block for their contents exactly like block containers do. [CSS21] The overflow property applies to flex containers.
Flex containers are not block containers, and so some properties that were designed with the assumption of block layout don’t apply in the context of flex layout. In particular:
float and clear do not create floating or clearance of flex item, and do not take it out-of-flow.
vertical-align has no effect on a flex item.
the ::first-line and ::first-letter pseudo-elements do not apply to flex containers, and flex containers do not contribute a first formatted line or first letter to their ancestors.
If an element’s specified display is inline-flex, then its display property computes to flex in certain circumstances: the table in CSS 2.1 Section 9.7 is amended to contain an additional row, with inline-flex in the "Specified Value" column and flex in the "Computed Value" column.
4. Flex ItemsLoosely speaking, the flex items of a flex container are boxes representing its in-flow contents.
Each in-flow child of a flex container becomes a flex item, and each contiguous sequence of child text runs is wrapped in an anonymous block container flex item. However, if the entire sequence of child text runs contains only white space (i.e. characters that can be affected by the white-space property) it is instead not rendered (just as if its text nodes were display:none).
Examples of flex items:
<div style="display:flex"> <!-- flex item: block child --> <div id="item1">block</div> <!-- flex item: floated element; floating is ignored --> <div id="item2" style="float: left;">float</div> <!-- flex item: anonymous block box around inline content --> anonymous item 3 <!-- flex item: inline child --> <span> item 4 <!-- flex items do not split around blocks --> <q style="display: block" id=not-an-item>item 4</q> item 4 </span> </div>Flex items determined from above code block
Note that the inter-element white space disappears: it does not become its own flex item, even though the inter-element text does get wrapped in an anonymous flex item.
Note also that the anonymous item’s box is unstyleable, since there is no element to assign style rules to. Its contents will however inherit styles (such as font settings) from the flex container.
A flex item establishes an independent formatting context for its contents. However, flex items themselves are flex-level boxes, not block-level boxes: they participate in their container’s flex formatting context, not in a block formatting context.
Note: Authors reading this spec may want to skip past the following box-generation and static position details.
The display value of a flex item is blockified: if the specified display of an in-flow child of an element generating a flex container is an inline-level value, it computes to its block-level equivalent. (See CSS2.1§9.7 [CSS21] and CSS Display [CSS3-DISPLAY] for details on this type of display value conversion.)
Note: Some values of display normally trigger the creation of anonymous boxes around the original box. If such a box is a flex item, it is blockified first, and so anonymous box creation will not happen. For example, two contiguous flex items with display: table-cell will become two separate display: block flex items, instead of being wrapped into a single anonymous table.
In the case of flex items with display: table, the table wrapper box becomes the flex item, and the order and align-self properties apply to it. The contents of any caption boxes contribute to the calculation of the table wrapper box’s min-content and max-content sizes. However, like width and height, the flex longhands apply to the table box as follows: the flex item’s final size is calculated by performing layout as if the distance between the table wrapper box’s edges and the table box’s content edges were all part of the table box’s border+padding area, and the table box were the flex item.
4.1. Absolutely-Positioned Flex ChildrenAs it is out-of-flow, an absolutely-positioned child of a flex container does not participate in flex layout.
The static position of an absolutely-positioned child of a flex container is determined such that the child is positioned as if it were the sole flex item in the flex container, assuming both the child and the flex container were fixed-size boxes of their used size. For this purpose, auto margins are treated as zero.
4.2. Flex Item Margins and PaddingsThe margins of adjacent flex items do not collapse.
Percentage margins and paddings on flex items, like those on block boxes, are resolved against the inline size of their containing block, e.g. left/right/top/bottom percentages all resolve against their containing block’s width in horizontal writing modes.
Auto margins expand to absorb extra space in the corresponding dimension. They can be used for alignment, or to push adjacent flex items apart. See Aligning with auto margins.
4.3. Flex Item Z-OrderingFlex items paint exactly the same as inline blocks [CSS21], except that order-modified document order is used in place of raw document order, and z-index values other than auto create a stacking context even if position is static (behaving exactly as if position were relative).
Note: Descendants that are positioned outside a flex item still participate in any stacking context established by the flex item.
4.4. Collapsed ItemsSpecifying visibility:collapse on a flex item causes it to become a collapsed flex item, producing an effect similar to visibility:collapse on a table-row or table-column: the collapsed flex item is removed from rendering entirely, but leaves behind a "strut" that keeps the flex line’s cross-size stable. Thus, if a flex container has only one flex line, dynamically collapsing or uncollapsing items may change the flex container’s main size, but is guaranteed to have no effect on its cross size and won’t cause the rest of the page’s layout to "wobble". Flex line wrapping is re-done after collapsing, however, so the cross-size of a flex container with multiple lines might or might not change.
Though collapsed flex items aren’t rendered, they do appear in the formatting structure. Therefore, unlike on display:none items [CSS21], effects that depend on a box appearing in the formatting structure (like incrementing counters or running animations and transitions) still operate on collapsed items.
In the following example, a sidebar is sized to fit its content.
visibility: collapseis used to dynamically hide parts of a navigation sidebar without affecting its width, even though the widest item (“Architecture”) is in a collapsed section.
Sample live rendering for example code below@media (min-width: 60em) { /* two column layout only when enough room (relative to default text size) */ div { display: flex; } #main { flex: 1; /* Main takes up all remaining space */ order: 1; /* Place it after (to the right of) the navigation */ min-width: 12em; /* Optimize main content area sizing */ } } /* menu items use flex layout so that visibility:collapse will work */ nav > ul > li { display: flex; flex-flow: column; } /* dynamically collapse submenus when not targetted */ nav > ul > li:not(:target):not(:hover) > ul { visibility: collapse; }
<div> <article id="main"> Interesting Stuff to Read </article> <nav> <ul> <li id="nav-about"><a href="#nav-about">About</a> … <li id="nav-projects"><a href="#nav-projects">Projects</a> <ul> <li><a href="…">Art</a> <li><a href="…">Architecture</a> <li><a href="…">Music</a> </ul> <li id="nav-interact"><a href="#nav-interact">Interact</a> … </ul> </nav> </div> <footer> …
To compute the size of the strut, flex layout is first performed with all items uncollapsed, and then re-run with each collapsed item replaced by a strut that maintains the original cross-size of the item’s original line. See the Flex Layout Algorithm for the normative definition of how visibility:collapse interacts with flex layout.
Note: Using visibility:collapse on any flex items will cause the flex layout algorithm to repeat partway through, re-running the most expensive steps. It’s recommended that authors continue to use display:none to hide items if the items will not be dynamically collapsed and uncollapsed, as that is more efficient for the layout engine. (Since only part of the steps need to be repeated when visibility is changed, however, 'visibility: collapse' is still recommended for dynamic cases.)
4.5. Automatic Minimum Size of Flex ItemsNote: The auto keyword, representing an automatic minimum size, is the new initial value of the min-width and min-height properties. The keyword was previously defined in this specification, but is now defined in the CSS Sizing module.
To provide a more reasonable default minimum size for flex items, the used value of a main axis automatic minimum size on a flex item that is not a scroll container is a content-based minimum size; for scroll containers the automatic minimum size is zero, as usual.
In general, the content-based minimum size of a flex item is the smaller of its content size suggestion and its specified size suggestion. However, if the box has an aspect ratio and no specified size, its content-based minimum size is the smaller of its content size suggestion and its transferred size suggestion. If the box has neither a specified size suggestion nor an aspect ratio, its content-based minimum size is the content size suggestion.
The content size suggestion, specified size suggestion, and transferred size suggestion used in this calculation account for the relevant min/max/preferred size properties so that the content-based minimum size does not interfere with any author-provided constraints, and are defined below:
For the purpose of calculating an intrinsic size of the box (e.g. the box’s min-content size), a content-based minimum size causes the box’s size in that axis to become indefinite (even if e.g. its width property specifies a definite size). Note this means that percentages calculated against this size will behave as auto.
Nonetheless, although this may require an additional layout pass to re-resolve percentages in some cases, this value (like the min-content, max-content, and fit-content values defined in [CSS-SIZING-3]) does not prevent the resolution of percentage sizes within the item.
Note that while a content-based minimum size is often appropriate, and helps prevent content from overlapping or spilling outside its container, in some cases it is not:
In particular, if flex sizing is being used for a major content area of a document, it is better to set an explicit font-relative minimum width such as min-width: 12em. A content-based minimum width could result in a large table or large image stretching the size of the entire content area into an overflow zone, and thereby making lines of text gratuitously long and hard to read.
Note also, when content-based sizing is used on an item with large amounts of content, the layout engine must traverse all of this content before finding its minimum size, whereas if the author sets an explicit minimum, this is not necessary. (For items with small amounts of content, however, this traversal is trivial and therefore not a performance concern.)
5. Ordering and OrientationThe contents of a flex container can be laid out in any direction and in any order. This allows an author to trivially achieve effects that would previously have required complex or fragile methods, such as hacks using the float and clear properties. This functionality is exposed through the flex-direction, flex-wrap, and order properties.
Note: The reordering capabilities of flex layout intentionally affect only the visual rendering, leaving speech order and navigation based on the source order. This allows authors to manipulate the visual presentation while leaving the source order intact for non-CSS UAs and for linear models such as speech and sequential navigation. See Reordering and Accessibility and the Flex Layout Overview for examples that use this dichotomy to improve accessibility.
Authors must not use order or the *-reverse values of flex-flow/flex-direction as a substitute for correct source ordering, as that can ruin the accessibility of the document.
5.1. Flex Flow Direction: the flex-direction propertyThe flex-direction property specifies how flex items are placed in the flex container, by setting the direction of the flex container’s main axis. This determines the direction in which flex items are laid out.
Note: The reverse values do not reverse box ordering: like writing-mode and direction [CSS3-WRITING-MODES], they only change the direction of flow. Painting order, speech order, and sequential navigation orders are not affected.
5.2. Flex Line Wrapping: the flex-wrap propertyThe flex-wrap property controls whether the flex container is single-line or multi-line, and the direction of the cross-axis, which determines the direction new lines are stacked in.
For the values that are not wrap-reverse, the cross-start direction is equivalent to either the inline-start or block-start direction of the current writing mode (whichever is in the cross axis) and the cross-end direction is the opposite direction of cross-start. When flex-wrap is wrap-reverse, the cross-start and cross-end directions are swapped.
5.3. Flex Direction and Wrap: the flex-flow shorthandThe flex-flow property is a shorthand for setting the flex-direction and flex-wrap properties, which together define the flex container’s main and cross axes.
Some examples of valid flows in an English (left-to-right, horizontal writing mode) document:
Note that the
flex-flowdirections are
writing modesensitive. In vertical Japanese, for example, a
rowflex container lays out its contents from top to bottom, as seen in this example:
5.4. Display Order: the order propertyFlex items are, by default, displayed and laid out in the same order as they appear in the source document. The order property can be used to change this ordering.
The order property controls the order in which flex items appear within the flex container, by assigning them to ordinal groups. It takes a single <integer> value, which specifies which ordinal group the flex item belongs to.
A flex container lays out its content in order-modified document order, starting from the lowest numbered ordinal group and going up. Items with the same ordinal group are laid out in the order they appear in the source document. This also affects the painting order [CSS21], exactly as if the flex items were reordered in the source document. Absolutely-positioned children of a flex container are treated as having order: 0 for the purpose of determining their painting order relative to flex items.
The following figure shows a simple tabbed interface, where the tab for the active pane is always first:
This could be implemented with the following CSS (showing only the relevant code):
.tabs { display: flex; } .tabs > .current { order: -1; /* Lower than the default of 0 */ }
Unless otherwise specified by a future specification, this property has no effect on boxes that are not flex items.
5.4.1. Reordering and AccessibilityThe order property does not affect ordering in non-visual media (such as speech). Likewise, order does not affect the default traversal order of sequential navigation modes (such as cycling through links, see e.g. tabindex
[HTML]).
Authors must use order only for visual, not logical, reordering of content. Style sheets that use order to perform logical reordering are non-conforming.
Note: This is so that non-visual media and non-CSS UAs, which typically present content linearly, can rely on a logical source order, while order is used to tailor the visual order. (Since visual perception is two-dimensional and non-linear, the desired visual order is not always logical.)
Many web pages have a similar shape in the markup, with a header on top, a footer on bottom, and then a content area and one or two additional columns in the middle. Generally, it’s desirable that the content come first in the page’s source code, before the additional columns. However, this makes many common designs, such as simply having the additional columns on the left and the content area on the right, difficult to achieve. This has been addressed in many ways over the years, often going by the name "Holy Grail Layout" when there are two additional columns.
ordermakes this trivial. For example, take the following sketch of a page’s code and desired layout:
<!DOCTYPE html> <header>...</header> <main> <article>...</article> <nav>...</nav> <aside>...</aside> </main> <footer>...</footer>
This layout can be easily achieved with flex layout:
main { display: flex; } main > article { order: 2; min-width: 12em; flex:1; } main > nav { order: 1; width: 200px; } main > aside { order: 3; width: 200px; }
As an added bonus, the columns will all be equal-height by default, and the main content will be as wide as necessary to fill the screen. Additionally, this can then be combined with media queries to switch to an all-vertical layout on narrow screens:
@media all and (max-width: 600px) { /* Too narrow to support three columns */ main { flex-flow: column; } main > article, main > nav, main > aside { /* Return them to document order */ order: 0; width: auto; } }
(Further use of multi-line flex containers to achieve even more intelligent wrapping left as an exercise for the reader.)
In order to preserve the author’s intended ordering in all presentation modes, authoring tools—including WYSIWYG editors as well as Web-based authoring aids—must reorder the underlying document source and not use order to perform reordering unless the author has explicitly indicated that the underlying document order (which determines speech and navigation order) should be out-of-sync with the visual order.
For example, a tool might offer both drag-and-drop reordering of flex items as well as handling of media queries for alternate layouts per screen size range.
Since most of the time, reordering should affect all screen ranges as well as navigation and speech order, the tool would perform drag-and-drop reordering at the DOM layer. In some cases, however, the author may want different visual orderings per screen size. The tool could offer this functionality by using order together with media queries, but also tie the smallest screen size’s ordering to the underlying DOM order (since this is most likely to be a logical linear presentation order) while using order to determine the visual presentation order in other size ranges.
This tool would be conformant, whereas a tool that only ever used order to handle drag-and-drop reordering (however convenient it might be to implement it that way) would be non-conformant.
Note: User agents, including browsers, accessible technology, and extensions, may offer spatial navigation features. This section does not preclude respecting the order property when determining element ordering in such spatial navigation modes; indeed it would need to be considered for such a feature to work. But order is not the only (or even the primary) CSS property that would need to be considered for such a spatial navigation feature. A well-implemented spatial navigation feature would need to consider all the layout features of CSS that modify spatial relationships.
6. Flex LinesFlex items in a flex container are laid out and aligned within flex lines, hypothetical containers used for grouping and alignment by the layout algorithm. A flex container can be either single-line or multi-line, depending on the flex-wrap property:
A single-line flex container (i.e. one with flex-wrap: nowrap) lays out all of its children in a single line, even if that would cause its contents to overflow.
A multi-line flex container (i.e. one with flex-wrap: wrap or flex-wrap: wrap-reverse) breaks its flex items across multiple lines, similar to how text is broken onto a new line when it gets too wide to fit on the existing line. When additional lines are created, they are stacked in the flex container along the cross axis according to the flex-wrap property. Every line contains at least one flex item, unless the flex container itself is completely empty.
This example shows four buttons that do not fit side-by-side horizontally, and therefore will wrap into multiple lines.
#flex { display: flex; flex-flow: row wrap; width: 300px; } .item { width: 80px; }
<div id="flex"> <div class="item">1</div> <div class="item">2</div> <div class="item">3</div> <div class="item">4</div> </div>
Since the container is 300px wide, only three of the items fit onto a single line. They take up 240px, with 60px left over of remaining space. Because the flex-flow property specifies a multi-line flex container (due to the wrap keyword appearing in its value), the flex container will create an additional line to contain the last item.
An example rendering of the multi-line flex container.Once content is broken into lines, each line is laid out independently; flexible lengths and the justify-content and align-self properties only consider the items on a single line at a time.
In a multi-line flex container (even one with only a single line), the cross size of each line is the minimum size necessary to contain the flex items on the line (after alignment due to align-self), and the lines are aligned within the flex container with the align-content property. In a single-line flex container, the cross size of the line is the cross size of the flex container, and align-content has no effect. The main size of a line is always the same as the main size of the flex container’s content box.
Here’s the same example as the previous, except that the flex items have all been given
flex: auto. The first line has 60px of remaining space, and all of the items have the same flexibility, so each of the three items on that line will receive 20px of extra width, each ending up 100px wide. The remaining item is on a line of its own and will stretch to the entire width of the line, i.e. 300px.
A rendering of the same as above, but with the items all given flex: auto. 7. FlexibilityThe defining aspect of flex layout is the ability to make the flex items “flex”, altering their width/height to fill the available space in the main dimension. This is done with the flex property. A flex container distributes free space to its items (proportional to their flex grow factor) to fill the container, or shrinks them (proportional to their flex shrink factor) to prevent overflow.
A flex item is fully inflexible if both its flex-grow and flex-shrink values are zero, and flexible otherwise.
7.1. The flex ShorthandThe flex property specifies the components of a flexible length: the flex factors (grow and shrink) and the flex basis. When a box is a flex item, flex is consulted instead of the main size property to determine the main size of the box. If a box is not a flex item, flex has no effect.
An item’s flex-grow value is effectively a request for some proportion of the free space, with 1 meaning “100% of the free space”; then if the items on the line are requesting more than 100% in total, the requests are rebalanced to keep the same ratio but use up exactly 100% of it. However, if the items request less than the full amount (such as three items that are each flex-grow: .25) then they’ll each get exactly what they request (25% of the free space to each, with the final 25% left unfilled). See §9.7 Resolving Flexible Lengths for the exact details of how free space is distributed.
This pattern is required for continuous behavior as flex-grow approaches zero (which means the item wants none of the free space). Without this, a flex-grow: 1 item would take all of the free space; but so would a flex-grow: 0.1 item, and a flex-grow: 0.01 item, etc., until finally the value is small enough to underflow to zero and the item suddenly takes up none of the free space. With this behavior, the item instead gradually takes less of the free space as flex-grow shrinks below 1, smoothly transitioning to taking none of the free space at zero.
Unless this “partial fill” behavior is specifically what’s desired, authors should stick to values ≥ 1; for example, using 1 and 2 is usually better than using .33 and .67, as they’re more likely to behave as intended if items are added, removed, or line-wrapped.
Note: The flex shrink factor is multiplied by the flex base size when distributing negative space. This distributes negative space in proportion to how much the item is able to shrink, so that e.g. a small item won’t shrink to zero before a larger item has been noticeably reduced.
<‘flex-basis’> accepts the same values as the width and height properties (except that auto is treated differently) plus the content keyword:
Note: This value was not present in the initial release of Flexible Box Layout, and thus some older implementations will not support it. The equivalent effect can be achieved by using auto together with a main size (width or height) of auto.
When omitted from the flex shorthand, its specified value is 0.
The initial values of the flex components are equivalent to flex: 0 1 auto.
Note: The initial values of flex-grow and flex-basis are different from their defaults when omitted in the flex shorthand. This is so that the flex shorthand can better accommodate the most common cases.
A unitless zero that is not already preceded by two flex factors must be interpreted as a flex factor. To avoid misinterpretation or invalid declarations, authors must specify a zero <‘flex-basis’> component with a unit or precede it by two flex factors.
7.1.1. Basic Values of flexThis section is informative.
The list below summarizes the effects of the four flex values that represent most commonly-desired effects:
By default, flex items won’t shrink below their minimum content size (the length of the longest word or fixed-size element). To change this, set the min-width or min-height property. (See §4.5 Automatic Minimum Size of Flex Items.)
7.2. Components of FlexibilityIndividual components of flexibility can be controlled by independent longhand properties.
Authors are encouraged to control flexibility using the flex shorthand rather than with its longhand properties directly, as the shorthand correctly resets any unspecified components to accommodate common uses.
7.2.1. The flex-grow propertyAuthors are encouraged to control flexibility using the flex shorthand rather than with flex-grow directly, as the shorthand correctly resets any unspecified components to accommodate common uses.
The flex-grow property sets the flex grow factor to the provided <number>. Negative numbers are invalid.
7.2.2. The flex-shrink propertyAuthors are encouraged to control flexibility using the flex shorthand rather than with flex-shrink directly, as the shorthand correctly resets any unspecified components to accommodate common uses.
The flex-shrink property sets the flex shrink factor to the provided <number>. Negative numbers are invalid.
7.2.3. The flex-basis propertyAuthors are encouraged to control flexibility using the flex shorthand rather than with flex-basis directly, as the shorthand correctly resets any unspecified components to accommodate common uses.
The flex-basis property sets the flex basis. It accepts the same values as the width and height property, plus content.
For all values other than auto and content (defined above), flex-basis is resolved the same way as width in horizontal writing modes [CSS21], except that if a value would resolve to auto for width, it instead resolves to content for flex-basis. For example, percentage values of flex-basis are resolved against the flex item’s containing block (i.e. its flex container); and if that containing block’s size is indefinite, the used value for flex-basis is content. As another corollary, flex-basis determines the size of the content box, unless otherwise specified such as by box-sizing [CSS3UI].
8. AlignmentAfter a flex container’s contents have finished their flexing and the dimensions of all flex items are finalized, they can then be aligned within the flex container.
The margin properties can be used to align items in a manner similar to, but more powerful than, what margins can do in block layout. Flex items also respect the alignment properties from CSS Box Alignment, which allow easy keyword-based alignment of items in both the main axis and cross axis. These properties make many common types of alignment trivial, including some things that were very difficult in CSS 2.1, like horizontal and vertical centering.
Note: While the alignment properties are defined in CSS Box Alignment [CSS-ALIGN-3], Flexible Box Layout reproduces the definitions of the relevant ones here so as to not create a normative dependency that may slow down advancement of the spec. These properties apply only to flex layout until CSS Box Alignment Level 3 is finished and defines their effect for other layout modes. Additionally, any new values defined in the Box Alignment module will apply to Flexible Box Layout; in otherwords, the Box Alignment module, once completed, will supercede the definitions here.
8.1. Aligning with auto marginsThis section is non-normative. The normative definition of how margins affect flex items is in the Flex Layout Algorithm section.
Auto margins on flex items have an effect very similar to auto margins in block flow:
During calculations of flex bases and flexible lengths, auto margins are treated as 0.
Prior to alignment via justify-content and align-self, any positive free space is distributed to auto margins in that dimension.
Overflowing boxes ignore their auto margins and overflow in the end direction.
Note: If free space is distributed to auto margins, the alignment properties will have no effect in that dimension because the margins will have stolen all the free space left over after flexing.
One use of
automargins in the main axis is to separate flex items into distinct "groups". The following example shows how to use this to reproduce a common UI pattern - a single bar of actions with some aligned on the left and others aligned on the right.
Sample rendering of the code below.nav > ul { display: flex; } nav > ul > #login { margin-left: auto; }
<nav> <ul> <li><a href=/about>About</a> <li><a href=/projects>Projects</a> <li><a href=/interact>Interact</a> <li id="login"><a href=/login>Login</a> </ul> </nav>
The figure below illustrates the difference in cross-axis alignment in overflow situations between using
auto marginsand using the
alignment properties.
About
Authoritarianism
Blog
About
Authoritarianism
Blog
The items in the figure on the left are centered with margins, while those in the figure on the right are centered with align-self. If this column flex container was placed against the left edge of the page, the margin behavior would be more desirable, as the long item would be fully readable. In other circumstances, the true centering behavior might be better. 8.2. Axis Alignment: the justify-content propertyThe justify-content property aligns flex items along the main axis of the current line of the flex container. This is done after any flexible lengths and any auto margins have been resolved. Typically it helps distribute extra free space leftover when either all the flex items on a line are inflexible, or are flexible but have reached their maximum size. It also exerts some control over the alignment of items when they overflow the line.
An illustration of the five justify-content keywords and their effects on a flex container with three colored items.
8.3. Cross-axis Alignment: the align-items and align-self propertiesFlex items can be aligned in the cross axis of the current line of the flex container, similar to justify-content but in the perpendicular direction. align-items sets the default alignment for all of the flex container’s items, including anonymous flex items. align-self allows this default alignment to be overridden for individual flex items. (For anonymous flex items, align-self always matches the value of align-items on their associated flex container.)
If either of the flex item’s cross-axis margins are auto, align-self has no effect.
Values have the following meanings:
Note: If the flex container’s height is constrained this value may cause the contents of the flex item to overflow the item.
The cross-start margin edge of the flex item is placed flush with the cross-start edge of the line.
An illustration of the five align-items keywords and their effects on a flex container with four colored items.
8.4. Packing Flex Lines: the align-content propertyThe align-content property aligns a flex container’s lines within the flex container when there is extra space in the cross-axis, similar to how justify-content aligns individual items within the main-axis. Note, this property has no effect on a single-line flex container. Values have the following meanings:
Note: Only multi-line flex containers ever have free space in the cross-axis for lines to be aligned in, because in a single-line flex container the sole line automatically stretches to fill the space.
8.5. Flex Container BaselinesIn order for a flex container to itself participate in baseline alignment (e.g. when the flex container is itself a flex item in an outer flex container), it needs to submit the position of the baselines that will best represent its contents. To this end, the baselines of a flex container are determined as follows (after reordering with order, and taking flex-direction into account):
If any of the flex items on the flex container’s startmost/endmost flex line participate in baseline alignment, the flex container’s first/last main-axis baseline set is generated from the shared alignment baseline of those flex items.
Otherwise, if the flex container has at least one flex item, the flex container’s first/last main-axis baseline set is generated from the alignment baseline of the startmost/endmost flex item. (If that item has no alignment baseline parallel to the flex container’s main axis, then one is first synthesized from its border edges.)
Otherwise, the flex container has no first/last main-axis baseline set, and one is synthesized if needed according to the rules of its .
If the flex container has at least one flex item, the flex container’s first/last cross-axis baseline set is generated from the alignment baseline of the startmost/endmost flex item. (If that item has no alignment baseline parallel to the flex container’s cross axis, then one is first synthesized from its border edges.)
Otherwise, the flex container has no first/last cross-axis baseline set, and one is synthesized if needed according to the rules of its .
When calculating the baseline according to the above rules, if the box contributing a baseline has an overflow value that allows scrolling, the box must be treated as being in its initial scroll position for the purpose of determining its baseline.
When determining the baseline of a table cell, a flex container provides a baseline just as a line box or table-row does. [CSS21]
See CSS Writing Modes 3 §4.1 Introduction to Baselines and CSS Box Alignment 3 §9 Baseline Alignment Details for more information on baselines.
9. Flex Layout AlgorithmThis section contains normative algorithms detailing the exact layout behavior of a flex container and its contents. The algorithms here are written to optimize readability and theoretical simplicity, and may not necessarily be the most efficient. Implementations may use whatever actual algorithms they wish, but must produce the same results as the algorithms described here.
Note: This section is mainly intended for implementors. Authors writing web pages should generally be served well by the individual property descriptions, and do not need to read this section unless they have a deep-seated urge to understand arcane details of CSS layout.
The following sections define the algorithm for laying out a flex container and its contents.
Note: Flex layout works with the flex items in order-modified document order, not their original document order.
9.1. Initial SetupNote: This case occurs, for example, in an English document (horizontal writing mode) containing a column flex container containing a vertical Japanese (vertical writing mode) flex item.
When determining the flex base size, the item’s min and max main sizes are ignored (no clamping occurs). Furthermore, the sizing calculations that floor the content box size at zero when applying box-sizing are also ignored. (For example, an item with a specified size of zero, positive padding, and box-sizing: border-box will have an outer flex base size of zero—and hence a negative inner flex base size.)
The hypothetical main size is the item’s flex base size clamped according to its used min and max main sizes (and flooring the content box size at zero).
For this step, the size of a flex item is its outer hypothetical main size. (Note: This can be negative.)
Repeat until all flex items have been collected into flex lines.
Note that the "collect as many" line will collect zero-sized flex items onto the end of the previous line even if the last non-zero item exactly "filled up" the line.
If the flex container is single-line and has a definite cross size, the cross size of the flex line is the flex container’s inner cross size.
Otherwise, for each flex line:
If the flex container is single-line, then clamp the line’s cross-size to be within the container’s computed min and max cross sizes. Note that if CSS 2.1’s definition of min/max-width/height applied more generally, this behavior would fall out automatically.
In this second layout round, when collecting items into lines, treat the collapsed items as having zero main size. For the rest of the algorithm following that step, ignore the collapsed items entirely (as if they were display:none) except that after calculating the cross size of the lines, if any line’s cross size is less than the largest strut size among all the collapsed items in the line, set its cross size to that strut size.
Skip this step in the second layout round.
If the flex item has align-self: stretch, redo layout for its contents, treating this used size as its definite cross size so that percentage-sized children can be resolved.
Note that this step does not affect the main size of the flex item, even if it has an intrinsic aspect ratio.
To resolve the flexible lengths of the items within a flex line:
∑(clamped size - unclamped size)
. If the total violation is:
Although CSS Sizing [CSS-SIZING-3] defines definite and indefinite lengths, Flexbox has several additional cases where a length can be considered definite:
Note: The main size of a fully inflexible item with a definite flex basis is, by definition, definite.
9.9. Intrinsic SizesThe intrinsic sizing of a flex container is used to produce various types of content-based automatic sizing, such as shrink-to-fit logical widths (which use the fit-content formula) and content-based logical heights (which use the max-content size).
See [CSS-SIZING-3] for a definition of the terms in this section.
9.9.1. Flex Container Intrinsic Main SizesThe max-content main size of a flex container is the smallest size the flex container can take while maintaining the max-content contributions of its flex items, insofar as allowed by the items’ own flexibility:
The min-content main size of a single-line flex container is calculated identically to the max-content main size, except that the flex item’s min-content contribution is used instead of its max-content contribution. However, for a multi-line container, it is simply the largest min-content contribution of all the flex items in the flex container.
Implications of this algorithm when the sum of flex is less than 1The above algorithm is designed to give the correct behavior for two cases in particular, and make the flex container’s size continuous as you transition between the two:
If all items are inflexible, the flex container is sized to the sum of their flex base size. (An inflexible flex base size basically substitutes for a width/height, which, when specified, is what a max-content contribution is based on in Block Layout.)
When all items are flexible with flex factors ≥ 1, the flex container is sized to the sum of the max-content contributions of its items (or perhaps a slightly larger size, so that every flex item is at least the size of its max-content contribution, but also has the correct ratio of its size to the size of the other items, as determined by its flexibility).
For example, if a flex container has a single flex item with flex-basis: 100px; but a max-content size of 200px, then when the item is flex-grow: 0, the flex container (and flex item) is 100px wide, but when the item is flex-grow: 1 or higher, the flex container (and flex item) is 200px wide.
There are several possible ways to make the overall behavior continuous between these two cases, particularly when the sum of flexibilities on a line is between 0 and 1, but all of them have drawbacks. We chose one we feel has the least bad implications; unfortunately, it "double-applies" the flexibility when the sum of the flexibilities is less than 1. In the above example, if the item has flex-grow: .5, then the flex container ends up 150px wide, but the item then sizes normally into that available space, ending up 125px wide.
9.9.2. Flex Container Intrinsic Cross SizesThe min-content/max-content cross size of a single-line flex container is the largest min-content contribution/max-content contribution (respectively) of its flex items.
For a multi-line flex container, the min-content/max-content cross size is the sum of the flex line cross sizes resulting from sizing the flex container under a cross-axis min-content constraint/max-content constraint (respectively). However, if the flex container is flex-flow: column wrap;, then it’s sized by first finding the largest min-content/max-content cross-size contribution among the flex items (respectively), then using that size as the available space in the cross axis for each of the flex items during layout.
Note: This heuristic for column wrap flex containers gives a reasonable approximation of the size that the flex container should be, with each flex item ending up as min(item’s own max-content, maximum min-content among all items), and each flex line no larger than its largest flex item. It’s not a perfect fit in some cases, but doing it completely correct is insanely expensive, and this works reasonably well.
9.9.3. Flex Item Intrinsic Size ContributionsThe main-size min-content contribution of a flex item is the larger of its outer min-content size and outer preferred size (its width/height as appropriate) if that is not auto, clamped by its flex base size as a maximum (if it is not growable) and/or as a minimum (if it is not shrinkable), and then further clamped by its min/max main size.
The main-size max-content contribution of a flex item is the larger of its outer max-content size and outer preferred size (its width/height as appropriate) clamped by its flex base size as a maximum (if it is not growable) and/or as a minimum (if it is not shrinkable), and then further clamped by its min/max main size.
Flex containers can break across pages between items, between lines of items (in multi-line mode), and inside items. The break-* properties apply to flex containers as normal for block-level or inline-level boxes. This section defines how they apply to flex items and the contents of flex items. See the CSS Fragmentation Module for more context [CSS3-BREAK].
The following breaking rules refer to the fragmentation container as the “page”. The same rules apply in any other fragmentation context. (Substitute “page” with the appropriate fragmentation container type as needed.) For readability, in this section the terms "row" and "column" refer to the relative orientation of the flex container with respect to the block flow direction of the fragmentation context, rather than to that of the flex container itself.
The exact layout of a fragmented flex container is not defined in this level of Flexible Box Layout. However, breaks inside a flex container are subject to the following rules (interpreted using order-modified document order):
Note: Break propagation (like text-decoration propagation) does not affect computed values.
This informative section presents a possible fragmentation algorithm for flex containers. Implementors are encouraged to improve on this algorithm and provide feedback to the CSS Working Group.
This algorithm assumes that pagination always proceeds only in the forward direction; therefore, in the algorithms below, alignment is mostly ignored prior to pagination. Advanced layout engines may be able to honor alignment across fragments.
It is the intent of this algorithm that column-direction single-line flex containers paginate very similarly to block flow. As a test of the intent, a flex container with justify-content:start and no flexible items should paginate identically to a block with in-flow children with same content, same used size and same used margins.
If a flex item does not entirely fit on a single page, it will not be paginated in multi-line column flex containers.
Any flex items that fit entirely into previous fragments still take up space in the main axis in later fragments.
If a line doesn’t fit on the page, and the line is not at the top of the page, move the line to the next page and restart the flex layout algorithm entirely, using only the items in and following this line.
If a flex item itself causes a forced break, rerun the flex layout algorithm from Main Sizing Determination through Main-Axis Alignment, using only the items on this and following lines, but with the item causing the break automatically starting a new line in the line breaking step, then continue with this step. Forced breaks within flex items are ignored.
This appendix is non-normative.
AcknowledgmentsThanks for feedback and contributions to
Erik Anderson, Christian Biesinger, Tony Chang, Phil Cupp, Arron Eicholz, James Elmore, Andrew Fedoniouk, Brian Heuston, Shinichiro Hamaji, Daniel Holbert, Ben Horst, John Jansen, Brad Kemper, Kang-hao Lu, Markus Mielke, Peter Moulder, Robert O’Callahan, Christoph Päper, Ning Rogers, Peter Salas, Elliott Sprehn, Morten Stenshorne, Christian Stockwell, Ojan Vafai, Eugene Veselov, Greg Whitworth, Boris Zbarsky.
ChangesThis section documents the changes since previous publications.
Changes since the 16 October 2017 CRA Disposition of Comments is also available.
The main-size min-content contribution of a flex item is the larger of its outer min-content size and outer preferred size (its width/height as appropriate) if that is not auto , clamped by its flex base size as a maximum (if it is not growable) and/or as a minimum (if it is not shrinkable), and then further clamped by its min/max main size properties.The main-size max-content contribution of a flex item is the larger of its outer max-content size and outer specified preferred size (its width/height as appropriate , ) if that is definite not auto , clamped by its flex base size as a maximum (if it is not growable) and/or as a minimum (if it is not shrinkable), and then further clamped by its min/max main size properties.
Indicates automatic sizing an automatic size based on the flex item’s content. (It is typically equivalent to the max-content size, but with adjustments to handle aspect ratios, intrinsic sizing constraints, and orthogonal flows; see details in §9 Flex Layout Algorithm.)
The exact layout of a fragmented flex container is not defined in this level of Flexible Box Layout. However, breaks inside a flex container are subject to the following rules (interpreted using order-modified document order) :
- In a row flex container, the break-before and break-after values on flex items are propagated to the flex line. The break-before values on the first line and the break-after values on the last line are propagated to the flex container.
Note: Break propagation (like text-decoration propagation) does not affect computed values.
For the purpose of calculating an intrinsic size of the element (e.g. the element’s min-content size), this value a content-based minimum size causes the element’s size in that axis to become indefinite (even if e.g. its width property specifies a definite size).
A Disposition of Comments is also available.
Substantive Changes and BugfixesWhen determining the flex base size, the item’s min and max main size properties are ignored (no clamping occurs). Furthermore, the sizing calculations that floor the content box size at zero when applying box-sizing are also ignored. (For example, an item with a specified size of zero, positive padding, and box-sizing: border-box will have an outer flex base size of zero—and hence a negative inner flex base size.)
The hypothetical main size is the item’s flex base size clamped according to its min and max main size properties (and flooring the content box size at zero) .
Fix min/max violations. Clamp each non-frozen item’s target main size by its min and max main size properties and floor its content-box size at zero . If the item’s target main size was made smaller by this, it’s a max violation. If the item’s target main size was made larger by this,
The main-size max-content contribution of a flex item is the larger of its outer max-content size and specified size (its width/height as appropriate, if that is definite) , clamped by its flex base size as a maximum (if it is not growable) and/or as a minimum (if it is not shrinkable), and then further clamped by its min/max main size properties.
If a flex item has a definite flex basis and the flex container has a definite main size, its a flex item’s post-flexing main size is treated as definite (even though it might technically rely on the sizes of indefinite siblings to resolve its flexed main size the indefinite sizes of any flex items in the same line).
Computed value: auto computes to parent’s align-items value; otherwise as specified …On absolutely positioned elements, a value of auto computes to itself. On all other elements, a value of auto for align-self computes to the value of align-items on the element’s parent, or stretch if the element has no parent.
Otherwise, the flex container has no first/last main cross -axis baseline set…
In the case of flex items with display: table, the table wrapper box becomes the flex item, and the order and align-self properties apply to it. The contents of any caption boxes contribute to the calculation of the table wrapper box’s min-content and max-content sizes. However, like width and height, the flex longhands apply to the table box as follows: the flex item’s final size is calculated by performing layout as if the distance between the table wrapper box’s edges and the table box’s content edges were all part of the table box’s border+padding area, and the table box were the flex item.
For this purpose, a value of align-self: auto is treated identically to start , and auto margins are treated as zero .
Within each line, find the largest max-content flex fraction among all the flex items. Add each item’s flex base size to the product of its flex grow factor (or scaled flex shrink factor, if the chosen max-content flex fraction was negative) and the chosen max-content flex fraction, then clamp that result ing item size according to by the max and min main size propert y ies .
The order property controls the order in which children of a flex container flex items appear within the flex container, by assigning them to ordinal groups. …
Absolutely-positioned children of a flex container are treated as having order: 0 for the purpose of determining their painting order relative to flex items.
Unless otherwise specified by a future specification, this property has no effect on boxes that are not children of a flex container flex items .
To this end, the baselines of a flex container are determined as follows (after reordering with order , and taking flex-direction into account ):
…
- If any of the flex items on the flex container’s first/last startmost/endmostflex line participate in baseline alignment, the flex container’s first/last main-axis baseline set …
- Otherwise, if the flex container has at least one flex item, the flex container’s first/last main-axis baseline set is generated from the alignment baseline of the first/last startmost/endmostflex item. …
- Otherwise, the flex container has no first/last main-axis baseline set, …
…
- If the flex container has at least one flex item, the flex container’s first/last cross-axis baseline set is generated from the alignment baseline of the first/last startmost/endmostflex item. …
Lines are evenly distributed in the flex container. If the leftover free-space is negative or there is only a single flex line in the flex container, this value is identical to flex-start.
User agents, including browsers, accessible technology, and extensions, may offer spatial navigation features. This section does not preclude respecting the order property when determining element ordering in such spatial navigation modes; indeed it would need to be considered for such a feature to work. However a UA that uses order in determining sequential navigation, but does not otherwise account for spatial relationships among elements (as expressed by the various layout features of CSS including and not limited to flex layout), is non-conforming. But order is not the only (or even the primary) CSS property that would need to be considered for such a spatial navigation feature. A well-implemented spatial navigation feature would need to consider all the layout features of CSS that modify spatial relationships.
A Disposition of Comments is also available.
Substantive Changes and BugfixesFor the purpose of calculating an intrinsic size of the element (e.g. the element’s min-content size), this value causes the element’s size in that axis to become indefinite (even if e.g. its width property specifies a definite size). Note this means that percentages calculated against this size will be treated as auto.
Nonetheless, although this may require an additional layout pass to re-resolve percentages in some cases, this value (like the min-content, max-content, and fit-content values defined in [CSS-SIZING-3]) does not prevent the resolution of percentage sizes within the item.
User agents, including browsers, accessible technology, and extensions, may offer spatial navigation features. This section does not preclude respecting the order property when determining element ordering in such spatial navigation modes; indeed it would need to be considered for such a feature to work. However a UA that uses order in determining sequential navigation, but does not otherwise account for spatial relationships among elements (as expressed by the various layout features of CSS including and not limited to flex layout), is non-conforming.
Once the cross size of a flex line has been determined, items in auto-sized flex containers are also considered definite for the purpose of layout; see step 11.
For all values other than auto and content (defined above), flex-basis is resolved the same way as width in horizontal writing modes [CSS21], except that if a value would resolve to auto for width, it instead resolves to content for flex-basis . For example, percentage values of flex-basis are resolved against the flex item’s containing block (i.e. its flex container); and if that containing block’s size is indefinite, the result is the same as a main size of auto (which in this case is treated as content) the used value for flex-basis is content .
A flex item is fully inflexible if both its flex-grow and flex-shrink values are zero, and flexible otherwise.
The main size of a fully inflexible item with a definite flex basis is, by definition, definite.
On a flex item whose overflow is visible in the main axis, when specified on the flex item’s main-axis min-size property, the following table gives the minimum size … specifies an automatic minimum size.
In general, the automatic minimum size … defined below:
A Disposition of Comments is also available.
Substantive Changes and BugfixesWhen omitted from the flex shorthand, its specified value is 0%.
- flex: <positive-number>
- Equivalent to flex: <positive-number> 1 0%.
Some values of display trigger the creation of anonymous boxes around the original box. It’s the outermost box—the direct child of the flex container box—that becomes a flex item. For example, given two contiguous child elements with display: table-cell, the anonymous table wrapper box generated around them [CSS21] becomes the flex item.
In the case of flex items with display: table, the table wrapper box becomes the flex item, and the order and align-self properties apply to it. The contents of any caption boxes contribute to the calculation of the table wrapper box’s min-content and max-content sizes. However, like width and height, the flex longhands apply to the table box as follows: the flex item’s final size is calculated by performing layout as if the distance between the table wrapper box’s edges and the table box’s content edges were all part of the table box’s border+padding area, and the table box were the flex item.
Note: Some values of display normally trigger the creation of anonymous boxes around the original box. If such a box is a flex item, it is blockified first, and so anonymous box creation will not happen. For example, two contiguous flex items with display: table-cell will become two separate display: block flex items, instead of being wrapped into a single anonymous table.
In order to prevent cycling sizing, the auto value of min-height and max-height does not factor into the percentage size resolution of the box’s contents. For example, a percentage-height block whose flex item parent has height: 120em; min-height: auto will size itself against height: 120em regardless of the impact that min-height might have on the used size of the flex item.
Although this may require an additional layout pass to re-resolve percentages in some cases, the auto value of min-width and min-height (like the min-content, max-content, and fit-content values defined in [CSS-SIZING-3]) does not prevent the resolution of percentage sizes within the item.
The main-size min-content/max-content contribution of a flex item is its outer hypothetical main size when sized under a min-content/max-content constraint (respectively) The main-size min-content/max-content contribution of a flex item is its outer min-content/max-content size, clamped by its flex base size as a maximum (if it is not growable) and/or as a minimum (if it is not shrinkable), and then further clamped by its min/max main size properties .
The max-content main size of a flex container is the smallest size the flex container can take while maintaining the max-content contributions of its flex items:
- For each flex item, subtract its outerflex base size from its max-content contribution size , then divide by its flex grow factor, floored at 1, or by its scaled flex shrink factor (if the result was negative, flooring the flex shrink factor at 1 if necessary) . If that result is not zero, divide it by (if the result was positive) its flex grow factor floored at 1, or (if the result was negative) by its scaled flex shrink factor, having floored the flex shrink factor at 1. This is the item’s max-content flex fraction.
The min-content cross size and max-content cross size of a flex container are the cross size of the flex container after performing layout into the given available main-axis space and infinite available cross-axis space.
The min-content/max-content cross size of a single-line flex container is the largest min-content contribution/max-content contribution (respectively) of its flex items.
For a multi-line flex container, the min-content/max-content cross size is the sum of the flex line cross sizes resulting from sizing the flex container under a cross-axis min-content constraint/max-content constraint (respectively). However, if the flex container is flex-flow: column wrap;, then it’s sized by first finding the largest min-content/max-content cross-size contribution among the flex items (respectively), then using that size as the available space in the cross axis for each of the flex items during layout.
This heuristic for column wrap flex containers gives a reasonable approximation of the size that the flex container should be, with each flex item ending up as min(item’s own max-content, maximum min-content among all items), and each flex line no larger than its largest flex item. It’s not a perfect fit in some cases, but doing it completely correct is insanely expensive, and this works reasonably well.
In order to preserve the author’s intended ordering in all presentation modes, authoring tools—including WYSIWYG editors as well as Web-based authoring aids—must reorder the underlying document source and not use order to perform reordering unless the author has explicitly indicated that the underlying document order (which determines speech and navigation order) should be out-of-sync with the visual order.
For example, a tool might offer both drag-and-drop reordering of flex items as well as handling of media queries for alternate layouts per screen size range.
Since most of the time, reordering should affect all screen ranges as well as navigation and speech order, the tool would perform drag-and-drop reordering at the DOM layer. In some cases, however, the author may want different visual orderings per screen size. The tool could offer this functionality by using order together with media queries, but also tie the smallest screen size’s ordering to the underlying DOM order (since this is most likely to be a logical linear presentation order) while using order to determine the visual presentation order in other size ranges.
This tool would be conformant, whereas a tool that only ever used order to handle drag-and-drop reordering (however convenient it might be to implement it that way) would be non-conformant.
On absolutely positioned elements, a value of auto computes to itself. On all other elements, a A value of auto for align-self computes to the value of align-items on the element’s parent, or stretch if the element has no parent.
Percentage margins and paddings on flex items are always resolved against their respective dimensions; unlike blocks, they do not always resolve against the inline dimension of their containing block.
Percentage margins and paddings on flex items can be resolved against either:
- their own axis (left/right percentages resolve against width, top/bottom resolve against height), or,
- the inline axis (left/right/top/bottom percentages all resolve against width)
A User Agent must choose one of these two behaviors.
Note: This variance sucks, but it accurately captures the current state of the world (no consensus among implementations, and no consensus within the CSSWG). It is the CSSWG’s intention that browsers will converge on one of the behaviors, at which time the spec will be amended to require that.
Authors should avoid using percentages in paddings or margins on flex items entirely, as they will get different behavior in different browsers.
- Determine the available main and cross space for the flex items. For each dimension, if that dimension of the flex container’s content box is a definite size, use that; if that dimension of the flex container is being sized under a min or max-content constraint, the available space in that dimension is that constraint; otherwise, subtract the flex container’s margin, border, and padding from the space available to the flex container in that dimension and use that value.
- If the first fragment of the flex container is not at the top of the page, and some none of its flex items don’t fit in the remaining space on the page, the entire fragment is moved to the next page.
A Disposition of Comments is also available.
Substantive Changes and BugfixesWhen a flex container has multiple lines, In a multi-line flex container (even one with only a single line), the cross size of each line is the minimum size necessary [...] When a flex container (even a multi-line one) has only one line, In a single-line flex container, the cross size of the line is the cross size of the flex container, and align-content has no effect.
Note, this property has no effect when the flex container has only a single line. on a single-line flex container.
Only flex containers with multiple lines multi-line flex containers ever have free space in the cross-axis for lines to be aligned in, because in a flex container with a single line single-line flex container the sole line automatically stretches to fill the space.
If the flex container has only one flex line (even if it’s a multi-line flex container) is single-line and has a definite cross size, the cross size of the flex line is the flex container’s inner cross size.
If the flex container has only one flex line (even if it’s a multi-line flex container), is single-line, then clamp the line’s cross-size to be within the container’s computed min and max cross-size properties.
collect consecutive items one by one until the first time that the next collected item would not fit into the flex container’s inner main size, ( or until a forced break is encountered , see §10 Fragmenting Flex Layout) . [...] A break is forced wherever the CSS2.1 page-break-before/page-break-after [CSS21] or the CSS3 break-before/break-after [CSS3-BREAK] properties specify a fragmentation break.
For every unfrozen item on the line, multiply its flex shrink factor by its outer inner flex base size, and note this as its scaled flex shrink factor.
If the cross size property of the flex item computes to auto, and n either of the cross-axis margins are auto, the flex item is stretched.
[If] ... the flex item has a definite flex basis, and the flex container has a definite main size, the flex item’s main size must be treated as definite ...
<img src="…" width=40 height=40 title="100x100 image">
. (Issue 25)
If the item’s computed flex-basis is content and its computed main size property is definite, then the specified size is that size
When determining the flex base size, the item’s min and max main size properties are ignored (no clamping occurs).
The hypothetical main size is the item’s flex base size clamped according to its min and max main size properties.
Otherwise, lay out size the item into the available space using its used flex basis in place of its main size, treating a value of content as max-content.
A Disposition of Comments is also available.
Substantive Changes and BugfixesThe following significant changes were made since the 25 March 2014 Last Call Working Draft
On a flex item whose overflow is notvisible in the main axis ,
On a flex item whose overflow is not visible, the following table gives the minimum size: [see table]
this keyword specifies as the minimum size the smaller of:
- the min-content size, or
- the computed width/height, if that value is definite.
… is defined if the item’s computed flex-basis is auto and its computed main size property is definite …
In order to prevent cycling sizing, the auto value of min-height and max-height does not factor into the percentage size resolution of the box’s contents. For example, a percentage-height block whose flex item parent has height: 120em; min-height: auto will size itself against height: 120em regardless of the impact that min-height might have on the used size of the flex item.
If a percentage is going to be resolved against a flex item’s main size, and the flex item has a definite flex basis, the main size must be treated as definite for the purpose of resolving the percentage, and the percentage must resolve against the flexed main size of the flex item (that is, after the layout algorithm below has been completed for the flex item’s flex container, and the flex item has acquired its final size).
- The used cross-size of the flex line is the largest of the numbers found in the previous two steps and zero.
If the flex container has only one flex line (even if it’s a multi-line flex container), then clamp the line’s cross-size to be within the container’s computed min and max cross-size properties. Note that if CSS 2.1’s definition of min/max-width/height applied more generally, this behavior would fall out automatically.
The following significant changes were made since the 25 March 2014 Last Call Working Draft
Its The static position of an absolutely-positioned child of a flex container is calculated by first doing full flex layout without the absolutely-positioned children, then positioning each absolutely-positioned child determined such that the child is positioned as if it were the sole flex item in the flex container, assuming both the child and the flex container were fixed-size boxes of their used size.
In other words, the static position of an absolutely positioned child of a flex container is determined after flex layout by setting the child’s static-position rectangle to the flex container’s content box, then aligning the absolutely positioned child within this rectangle according to the justify-content value of the flex container and the align-self value of the child itself.
An absolutely-positioned child of a flex container does not participate in flex layout beyond the reordering step . However, it does participate in the reordering step (see order), which has an effect in their painting order.
The order property controls the order in which flex items children of a flex container appear within their flex container…
Unless otherwise specified by a future specification, this property has no effect on boxes that are not flex items children of a flex container .
Note: Absolutely-positioned children of a flex container do not participate in flex layout, but are reordered together with any flex item children.
If the cross size property of the flex item computes to auto, and either of the cross-axis margins are auto, the flex item is stretched. Its its used value …
A Disposition of Comments is also available.
Substantive Changes and BugfixesThe following significant changes were made since the 18 September 2012 Candidate Recommendation:
- auto
When used as the value of a flex item’s min main size property, this keyword indicates a minimum of the min-content size, to help ensure that the item is large enough to fit its contents.
It is intended that this will compute to the min-content keyword when the specification defining it ([CSS-SIZING-3]) is sufficiently mature.
On a flex item whose overflow is not visible, this keyword specifies as the minimum size the smaller of:
- the min-content size, or
- the computed width/height, if that value is definite.
Percentage margins and paddings on flex items are always resolved against their respective dimensions; unlike blocks, they do not always resolve against the inline dimension of their containing block.
As a special case for handling stretched flex items, if a single-line flex container has a definite cross size, the outer cross size of any flex items with align-self: stretch is the flex container’s inner cross size (clamped to the flex item’s min and max cross size) and is considered definite.
If the flex item has align-self: stretch, redo layout for its contents, treating this used size as its definite cross size so that percentage-sized children can be resolved.
Note that this step does not affect the main size of the flex item, even if it has an intrinsic aspect ratio.
If the flex item has ...
- an intrinsic aspect ratio,
- a flex basis of auto, and
- a definite cross size
then the flex base size is calculated from its inner cross size and the flex item’s intrinsic aspect ratio.
If a cross size is needed to determine the main size (e.g. when the flex item’s main size is in its block axis) and the flex item’s cross size is auto and not definite, in this calculation use fit-content as the flex item’s cross size.
Determine the main size of the flex container using its main size property. In this calculation, the min content main size of the flex container is the maximum of the flex container’s items' min-content size contributions, and the max content main size of the flex container is the sum of the flex container’s items' max-content size contributions. The min-content/max-content main size contribution of an item is its outer hypothetical main size when sized under a min-content/max-content constraint (respectively). For this computation, ‘auto’ margins on flex items are treated as ‘0’.
The max-content main size of a flex container is the sum of the flex container’s items' max-content contributions in the main axis. The min-content main size of a single-line flex container is the sum of the flex container’s items' min-content contributions in the main axis; for a multi-line container, it is the largest of those contributions.
The min-content cross size and max-content cross size of a flex container are the cross size of the flex container after performing layout into the given available main-axis space and infinite available cross-axis space.
The main-size min-content/max-content contribution of a flex item is its outer hypothetical main size when sized under a min-content/max-content constraint (respectively).
See [CSS-SIZING-3] for a definition of the terms in this section.
If the flex container has only one flex line (even if it’s a multi-line flex container) and has a definite cross size , the cross size of the flex line is the flex container’s inner cross size.
The used cross-size of the flex line is the larger largest of the numbers found in the previous two steps and zero .
Flex items paint exactly the same as block-level elements in the normal flow inline blocks [CSS21] .
When omitted from the flex shorthand, its specified value is 0% the length zero .
Note: This change was reverted.
- flex: <positive-number>
- Equivalent to flex: <positive-number> 1 0px0%.
percentage values of flex-basis are resolved against the flex item’s containing block, i.e. its flex container, and if that containing block’s size is indefinite, the result is undefined the same as a main size of auto .
An absolutely-positioned child of a flex container does not participate in flex layout beyond the reordering step.However, if both left and right or both top and bottom are auto, then the used value of those properties are computed from its static position, as follows:
If both left and right are auto, the flex item must be positioned so that its main-start or cross-start edge (whichever is in the horizontal axis) is aligned with the static position. If both top and bottom are auto, the flex item must be positioned so that its main-start or cross-start edge (whichever is in the vertical axis) is aligned with the static position.
In the main axis,
- If there is a subsequent in-flow flex item on the same flex line, the static position is the outer main-start edge of that flex item.
- Otherwise, if there is a preceding in-flow flex item on the same flex line, the static position is the outer main-end edge of that flex item.
- Otherwise, the static position is determined by the value of justify-content on the flex container as if the static position were represented by a zero-sized flex item.
In the cross axis,
- If there is a preceding in-flow flex item, the static position is the cross-start edge of the flex line that item is in.
- Otherwise, the static position is the cross-start edge of the first flex line.
The static position is intended to more-or-less match the position of an anonymous 0×0 in-flow flex-start-aligned flex item that participates in flex layout, the primary difference being that any packing spaces due to justify-content: space-around or justify-content: space-between are suppressed around the hypothetical item: between it and the next item if there is a real item after it, else between it and the previous item (if any) if there isn’t.
Its static position is calculated by first doing full flex layout without the absolutely-positioned children, then positioning each absolutely-positioned child as if it were the sole flex item in the flex container, assuming both the child and the flex container were fixed size boxes of their used size.
For example, by default, the static position of an absolutely positioned child aligns it to the main-start/cross-start corner, corresponding to the default values of
justify-contentand
align-contenton the
flex container. Setting
justify-content:centeron the
flex container, however, would center it in the main axis.
The following significant clarifications were also made:
Re-order the flex items and absolutely positioned flex container children according to their order.
float and clear have no effect on a flex item , and do not take it out-of-flow. However, the float property can still affect box generation by influencing the display property’s computed value.
However, an anonymous flex item that contains only white space (i.e. characters that can be affected by the white-space property) is not rendered, as if it were display:none.
Note: This change was reverted.If the specified display-outside of an in-flow child of an element that generates a flex container is inline-level, it computes to block-level. (This effectively converts any inline display values to their block equivalents.)
- stretch
If the cross size property of the flex item is computes toauto, its used value is …
Determine the used cross size of each flex item. If a flex item has align-self: stretch, its computed cross size property is auto, and …
Determine the main size of the flex container using the rules of the formatting context in which it participates its main size property .
Otherwise, starting from the first uncollected item, collect consecutive items one by one until the first time that the next collected item would not fit into the flex container’s inner main size, or until a forced break is encountered. If the very first uncollected item wouldn’t fit, collect just it into the line as many consecutive flex items as will fit or until a forced break is encountered (but collect at least one) into the flex container’s inner main size into a flex line .
Note that items with zero main size will never start a line unless they’re the very first items in the flex container, or they’re preceded by a forced break. The "collect as many" line will collect them zero-sized flex items onto the end of the previous line even if the last non-zero item exactly "filled up" the line.
- If the cross size property is a definite size, use that, clamped by the min and max cross size properties of the flex container .
- Otherwise, use the sum of the flex lines' cross sizes, clamped by the min and max cross size properties of the flex container .
Flexbox introduces no new privacy leaks, or security considerations beyond "implement it correctly".
Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this specification.
All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and notes. [RFC2119]
Examples in this specification are introduced with the words “for example” or are set apart from the normative text with class="example"
, like this:
Informative notes begin with the word “Note” and are set apart from the normative text with class="note"
, like this:
Note, this is an informative note.
Advisements are normative sections styled to evoke special attention and are set apart from other normative text with <strong class="advisement">
, like this: UAs MUST provide an accessible alternative.
A style sheet is conformant to this specification if all of its statements that use syntax defined in this module are valid according to the generic CSS grammar and the individual grammars of each feature defined in this module.
A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined by the appropriate specifications, it supports all the features defined by this specification by parsing them correctly and rendering the document accordingly. However, the inability of a UA to correctly render a document due to limitations of the device does not make the UA non-conformant. (For example, a UA is not required to render color on a monochrome monitor.)
An authoring tool is conformant to this specification if it writes style sheets that are syntactically correct according to the generic CSS grammar and the individual grammars of each feature in this module, and meet all other conformance requirements of style sheets as described in this module.
The following sections define several conformance requirements for implementing CSS responsibly, in a way that promotes interoperability in the present and future.
So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values, keywords, and other syntactic constructs for which they have no usable level of support. In particular, user agents must not selectively ignore unsupported property values and honor supported values in a single multi-value property declaration: if any value is considered invalid (as unsupported values must be), CSS requires that the entire declaration be ignored.
Once a specification reaches the Candidate Recommendation stage, implementers should release an unprefixed implementation of any CR-level feature they can demonstrate to be correctly implemented according to spec, and should avoid exposing a prefixed variant of that feature.
To establish and maintain the interoperability of CSS across implementations, the CSS Working Group requests that non-experimental CSS renderers submit an implementation report (and, if necessary, the testcases used for that implementation report) to the W3C before releasing an unprefixed implementation of any CSS features. Testcases submitted to W3C are subject to review and correction by the CSS Working Group.
For this specification to be advanced to Proposed Recommendation, there must be at least two independent, interoperable implementations of each feature. Each feature may be implemented by a different set of products, there is no requirement that all features be implemented by a single product. For the purposes of this criterion, we define the following terms:
The specification will remain Candidate Recommendation for at least six months.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3