A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.w3.org/TR/css-cascade-6/ below:

CSS Cascading and Inheritance Level 6

1. Introduction and Missing Sections

This is a diff spec over CSS Cascading and Inheritance Level 5. It is currently an Exploratory Working Draft: if you are implementing anything, please use Level 5 as a reference. We will merge the Level 5 text into this draft once it reaches CR.

2. Cascading

The cascade takes an unordered list of declared values for a given property on a given element, sorts them by their declaration’s precedence as determined below, and outputs a single cascaded value.

2.1. Cascade Sorting Order

The cascade sorts declarations according to the following criteria, in descending order of precedence:

Origin and Importance
The origin of a declaration is based on where it comes from and its importance is whether or not it is declared with !important (see below). The precedence of the various origins is, in descending order:
  1. Transition declarations [css-transitions-1]
  2. Important user agent declarations
  3. Important user declarations
  4. Important author declarations
  5. Animation declarations [css-animations-1]
  6. Normal author declarations
  7. Normal user declarations
  8. Normal user agent declarations

Declarations from origins earlier in this list win over declarations from later origins.

Context
A document language can provide for blending declarations sourced from different encapsulation contexts, such as the nested tree contexts of shadow trees in the [DOM].

When comparing two declarations that are sourced from different encapsulation contexts, then for normal rules the declaration from the outer context wins, and for important rules the declaration from the inner context wins. For this purpose, [DOM] tree contexts are considered to be nested in shadow-including tree order.

Note: This effectively means that normal declarations belonging to an encapsulation context can set defaults that are easily overridden by the outer context, while important declarations belonging to an encapsulation context can enforce requirements that cannot be overridden by the outer context.

The Style Attribute
Separately for normal and important declarations, declarations that are attached directly to an element (such as the contents of a style attribute) rather than indirectly mapped by means of a style rule selector take precedence over declarations the same importance that are mapped via style rule.
Layers
Declarations within each origin and context can be explicitly assigned to a cascade layer. For the purpose of this step, any declaration not assigned to an explicit layer is added to an implicit final layer.

Cascade layers (like declarations) are sorted by order of appearance, see § 2.4.1 Layer Ordering. When comparing declarations that belong to different layers, then for normal rules the declaration whose cascade layer is latest in the layer order wins, and for important rules the declaration whose cascade layer is earliest wins.

Note: This follows the same logic used for precedence of normal and important origins, thus the !important flag maintains the same “override” purpose in both settings.

Specificity
The Selectors module [SELECT] describes how to compute the specificity of a selector. Each declaration has the same specificity as the style rule it appears in. The declaration with the highest specificity wins.
Scope Proximity
When comparing declarations that appear in style rules with different scoping roots, then the declaration with the fewest generational or sibling-element hops between the scoping root and the scoped style rule subject wins. For this purpose, style rules without a scoping root are considered to have infinite proximity hops.
Order of Appearance
The last declaration in document order wins. For this purpose:

The output of the cascade is a (potentially empty) sorted list of declared values for each property on each element.

2.2. Cascading Origins

CSS Cascading 5 § 6.2 Cascading Origins

cascade origin

2.3. Important Declarations: the !important annotation

CSS Cascading 5 § 6.3 Important Declarations: the !important annotation

important normal

2.4. Cascade Layers

CSS Cascading 5 § 6.4 Cascade Layers

2.4.1. Layer Ordering

CSS Cascading 5 § 6.4.3 Layer Ordering

2.5. Scoping Styles: the @scope rule

A scope is a subtree or fragment of a document, which can be used by selectors for more targeted matching. A scope is formed by determining:

An element is in scope if:

Note: In contrast to Shadow Encapsulation, which describes a persistent one-to-one relationship in the DOM between a shadow host and its nested shadow tree, multiple overlapping scopes can be defined in relation to the same elements.

Scoped styles are described in CSS using the @scope block at-rule, which declares a scoping root and optional scoping limits associated with a set of style rules.

For example, an author might have wide-reaching color-scheme scopes, which overlap more narrowly-scoped design patterns such as a media object. The selectors in the

@scope

rule establish

scoping root

and optional

scoping limit

elements, while the nested selectors only match elements that are

in a resulting scope

:

@scope (.light-scheme) {
  /* Only match links inside a light-scheme */
  a { color: darkmagenta; }
}

@scope (.dark-scheme) {
  /* Only match links inside a dark-scheme */
  a { color: plum; }
}

@scope (.media-object) {
  /* Only match author images inside a media-object */
  .author-image { border-radius: 50%; }
}

By providing

scoping limits

, an author can limit matching more deeply nested descendants. For example:

@scope (.media-object) to (.content > *) {
  img { border-radius: 50%; }
  .content { padding: 1em; }
}

The img selector will only match image tags that are in a DOM fragment starting with any .media-object, and including all descendants up to any intervening children of the .content class.

Should scoping limits be added to the definition of scoped selectors?

2.5.1. Effects of @scope

The @scope at-rule has three primary effects on the style rules it contains:

Note: Unlike Nesting, selectors within an @scope rule do not acquire the specificity of any parent selector(s) in the @scope prelude.

The following selectors have the same specificity (0,0,1):

@scope (#hero) {
  img { border-radius: 50%; }
}

:where(#hero) img { border-radius: 50%; }

The additional specificity of the #hero selector is not applied to the specificity of the scoped selector. However, since one img selector is scoped, that selector is weighted more strongly in the cascade with the application of scope proximity.

Many existing tools implement "scoped styles" by applying a unique class or attribute to every element in a given scope or "single file component." In this example there are two scopes (

main-component

and

sub-component

) and every element is marked as part of one or both scopes using the

data-scope

attribute:

<section data-scope="main-component">
  <p data-scope="main-component">...<p>

  <!-- sub-component root is in both scopes -->
  <section data-scope="main-component sub-component">
    <!-- children are only in the inner scope -->
    <p data-scope="sub-component">...<p>
  </section>
</section>

Those custom scope attributes are then appended to every single selector in CSS:

p[data-scope~='main-component'] { color: red; }
p[data-scope~='sub-component'] { color: blue; }

/* both sections are part of the outer scope */
section[data-scope~='main-component'] { background: snow; }

/* the inner section is also part of the inner scope */
section[data-scope~='sub-component'] { color: ghostwhite; }

Using the @scope rule, authors and tools can replicate similar behavior with the unique attribute or class applied only to the scoping roots:

<section data-scope="main-component">
  <p>...<p>
  <section data-scope="sub-component">
    <p>...<p>
  </section>
</section>

Then the class or attribute can be used for establishing both upper and lower boundaries. Elements matched by a lower boundary selector are excluded from the resulting scope, which allows authors to create non-overlapping scopes by default:

@scope ([data-scope='main-component']) to ([data-scope]) {
  p { color: red; }

  /* only the outer section is part of the outer scope */
  section { background: snow; }
}

@scope ([data-scope='sub-component']) to ([data-scope]) {
  p { color: blue; }

  /* the inner section is only part of the inner scope */
  section { color: ghostwhite; }
}

However, authors can use the child combinator and universal selector to create scope boundaries that overlap, such that the inner scope root is part of both scopes:

@scope ([data-scope='main-component']) to ([data-scope] > *) {
  p { color: red; }

  /* both sections are part of the outer scope */
  section { background: snow; }
}
2.5.2. Syntax of @scope

The syntax of the @scope rule is:

@scope [(<scope-start>)]? [to (<scope-end>)]? {
  <rule-list>
}

where:

Pseudo-elements cannot be scoping roots or scoping limits; they are invalid both within <scope-start> and <scope-end>.

2.5.3. Scoped Style Rules

Scoped style rules differ from non-scoped rules in the following ways:

By default, selectors in a

scoped style rule

are

relative selectors

, with the

scoping root

and

descendant combinator

implied at the start. The following selectors will match the same elements:

@scope (#my-component) {
  p { color: green; }
  :scope p { color: green; }
}

Authors can adjust the implied relationship by adding an explicit combinator:

@scope (#my-component) {
  > p { color: green; }
  :scope > p { color: green; }
}

Authors can also target or explicitly position the scoping root in a selector by including either :scope or & in a given selector:

@scope (#my-component) {
  :scope { border: thin solid; }
  & { border: thin solid; }

  main :scope p { color: green; }
  main & p { color: green; }
}

While the :scope or & selectors can both refer to the scoping root, they have otherwise different meanings in this context:

Differences in selector matching

The :scope selector will only match the scoping root itself, while the & selector is able to match any element that is matched by the <scope-start> selector list.

Differences in selector specificity

The :scope selector has a specificity equal to other pseudo-classes, while the & selector has the specificity equal to the most specific selector in <scope-start>.

2.5.4. Identifying Scoping Roots and Limits

A @scope rule produces one or more scopes as follows:

Finding the scoping root(s)

For each element matched by <scope-start>, create a scope using that element as the scoping root. If no <scope-start> is specified, the scoping root is the parent element of the owner node of the stylesheet where the @scope rule is defined. (If no such element exists and the containing node tree is a shadow tree, then the scoping root is the shadow host. Otherwise, the scoping root is the root of the containing node tree.) Any :scope or & selectors in <scope-start> are interpreted as defined for its outer context.

Finding any scoping limits

For each scope created by a scoping root, its scoping limits are set to all elements that are in scope and that match <scope-end>, interpreting :scope and & exactly as in scoped style rules.

Authors can establish local scoping for

style

elements by leaving out the

<scope-start>

selector. For example:

<div>
  <style>
    @scope {
      p { color: red; }
    }
  </style>
  <p>this is red</p>
</div>
<p>not red</p>

That would be equivalent to:

<div id="foo">
  <style>
    @scope (#foo) {
      p { color: red; }
    }
  </style>
  <p>this is red</p>
</div>
<p>not red</p>
Scoping limits

can use the

:scope

pseudo-class to require a specific relationship to the

scoping root

:

/* .content is only a limit when it is a direct child of the :scope */
@scope (.media-object) to (:scope > .content) { ... }

Scoping limits can also reference elements outside their scoping root by using :scope. For example:

/* .content is only a limit when the :scope is inside .sidebar */
@scope (.media-object) to (.sidebar :scope .content) { ... }
2.5.5. Scope Nesting

@scope rules can be nested. In this case, just as with the nested style rules, the prelude selectors of the inner @scope (those defining its scope) are scoped by the selectors of the outer one.

Note: The resulting scope for further nested scoped style rules is practically constrained by both the outer and inner @scope rules, but the scoping root is defined by the innermost @scope. Since scope proximity is measured between a scoped style rule subject and scoping root, only the innermost @scope matters for determining scope proximity of nested @scope rules.

Should the scope proximity calculation be impacted by nesting scopes? [Issue #10795]

When nesting

@scope

rules inside other

@scope

rules, or inside other selectors, the

<scope-start>

selector is

relative to

the nesting context, while the

<scope-end>

and any

scoped style rules

are

relative to

the

scoping root

For example, the following code:

@scope (.parent-scope) {
  @scope (:scope > .child-scope) to (:scope .limit) {
    :scope .content {
      color: red;
    }
  }
}

is equivalent to:

@scope (.parent-scope > .child-scope) to (.parent-scope > .child-scope .limit) {
  .parent-scope > .child-scope .content {
    color: red;
  }
}

Global name-defining at-rules such as @keyframes or @font-face or @layer that are defined inside @scope are valid, but are not scoped or otherwise affected by the enclosing @scope rule. However, any style rules contained by such rules (e.g. within @layer) are scoped.

2.6. Precedence of Non-CSS Presentational Hints

CSS Cascading 5 § 6.4 Cascade Layers

3. CSSOM 3.1. The CSSScopeRule interface

The CSSScopeRule interface represents the @scope rule:

[Exposed=Window]
interface CSSScopeRule : CSSGroupingRule {
  readonly attribute CSSOMString? start;
  readonly attribute CSSOMString? end;
};
start of type CSSOMString
The start attribute returns the result of serializing the <scope-start> of the rule (without the enclosing parentheses), or null if there is no <scope-start>.
end of type CSSOMString
The end attribute returns the result of serializing the <scope-end> of the rule (without the enclosing parentheses), or null if there is no <scope-end>.
4. Changes

This appendix is informative.

4.1. Changes since the 21 March 2023 Working Draft

Significant changes since the 21 March 2023 Working Draft include:

4.2. Changes since the 21 December 2021 First Public Working Draft

Significant changes since the 21 December 2021 First Public Working Draft include:

4.3. Additions Since Level 5

The following features have been added since Level 5:

4.4. Additions Since Level 4

The following features have been added since Level 4:

4.5. Additions Since Level 3

The following features have been added since Level 3:

4.6. Additions Since Level 2

The following features have been added since Level 2:

Acknowledgments

David Baron, Tantek Çelik, Keith Grant, Giuseppe Gurgone, Theresa O’Connor, Florian Rivoal, Noam Rosenthal, Simon Sapin, Jen Simmons, Nicole Sullivan, Lea Verou, and Boris Zbarsky contributed to this specification.

5. Privacy Considerations 6. Security Considerations

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the normative text with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like this:

Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other normative text with <strong class="advisement">, like this: UAs MUST provide an accessible alternative.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this module are valid according to the generic CSS grammar and the individual grammars of each feature defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined by the appropriate specifications, it supports all the features defined by this specification by parsing them correctly and rendering the document accordingly. However, the inability of a UA to correctly render a document due to limitations of the device does not make the UA non-conformant. (For example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically correct according to the generic CSS grammar and the individual grammars of each feature in this module, and meet all other conformance requirements of style sheets as described in this module.

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values, keywords, and other syntactic constructs for which they have no usable level of support. In particular, user agents must not selectively ignore unsupported component values and honor supported values in a single multi-value property declaration: if any value is considered invalid (as unsupported values must be), CSS requires that the entire declaration be ignored.

Once a specification reaches the Candidate Recommendation stage, non-experimental implementations are possible, and implementors should release an unprefixed implementation of any CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working Group requests that non-experimental CSS renderers submit an implementation report (and, if necessary, the testcases used for that implementation report) to the W3C before releasing an unprefixed implementation of any CSS features. Testcases submitted to W3C are subject to review and correction by the CSS Working Group.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4