The random.vonmisesvariate() method in Python generates random numbers that follows the von Mises distribution, also known as the circular normal distribution or Tikhonov distribution. This distribution is used in probability theory and directional statistics to model data on a circular domain, such as angles. Parameters such as mu and kappa define the distribution's characteristics, where mu is the mean angle expressed in radians, which should be between 0 and 2, and kappa, the concentration parameter, must be greater than or equal to zero.
Note − This function is not accessible directly, so we need to import the random module and then we need to call this function using random static object.
SyntaxFollowing is the syntax of vonmisesvariate() method −
random.vonmisesvariate(mu, kappa)Parameters
The Python random.vonmisesvariate() method takes two parameters −
mu: This is the mean angle, expressed in radians, which should be between 0 and 2.
sigma: This is the concentration parameter, which must be greater than or equal to zero. It measures how concentrated the distribution is around the mean angle. When kappa is zero, the distribution becomes uniform over the range 0 to 2.
This random.vonmisesvariate() method returns a random number that follows the von Mises distribution (circular normal distribution).
Example 1Let's see a basic example of using the random.vonmisesvariate() method for generating a random number from a von Mises distribution with a mean angle of (180 degrees) and a concentration parameter of 1.
import random import math # mean angle in radians mu = math.pi # concentration parameter kappa = 1 # Generate a von Mises distributed random number random_angle = random.vonmisesvariate(mu, kappa) print('A random number from von Mises distribution:',random_angle)
Following is the output −
A random number from von Mises distribution: 1.5637865003055311
Note: The Output generated will vary each time you run the program due to its random nature.
Example 2This example generates a list of 10 random numbers that follows the von Mises distribution using the random.vonmisesvariate() method.
import random # mean angle in radians mu = 0 # concentration parameter kappa = 3 # list to store generated wave directions result = [] # Generate a list of random numbers from the von Mises distribution for _ in range(10): direction = random.vonmisesvariate(mu, kappa) result.append(direction) print("List of random numbers from von Mises distribution:", result)
While executing the above code you will get the similar output like below −
List of random numbers from von Mises distribution: [5.888313245257218, 0.12280876945454619, 0.3877094476451274, 5.807284393939756, 0.4416696367838093, 6.165324081139434, 5.783168359038133, 6.05815219609358, 5.889178104771408, 5.946514998727608]Example 3
Here is another example that generates and visualizes von Mises distributions with different concentration parameters (kappa) using the random.vonmisesvariate() method.
import random import math import matplotlib.pyplot as plt # mean angle in radians mu = math.pi / 2 def plot_vonmises(mu, kappa, label, color): # Generate von Mises-distributed data data = [random.vonmisesvariate(mu, kappa) for _ in range(10000)] # Plot histogram of the generated data plt.hist(data, bins=100, density=True, alpha=0.5, color=color, label=r'(mu=$\pi/2$, k={})'.format(kappa)) # Create a figure for the plots fig = plt.figure(figsize=(7, 4)) # Plotting for each set of parameters plot_vonmises(mu, 0, '0, 0', 'blue') plot_vonmises(mu, 0.5, '0, 0.5', 'green') plot_vonmises(mu, 1, '0, 1', 'yellow') plot_vonmises(mu, 2, '0, 2', 'red') plot_vonmises(mu, 8, '0, 8', 'pink') # Adding labels and title plt.title('von Mises Distributions with Different Concentration Parameters') plt.legend() # Show plot plt.show()
The output of the above code is as follows −
python_modules.htm
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4