A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.tutorialspoint.com/java/java_thread_life_cycle.htm below:

Java - Thread Life Cycle

Java - Thread Life Cycle Life Cycle of a Thread in Java

The life cycle of a thread in Java refers to the various states of a thread goes through. For example, a thread is born, started, runs, and then dies. Thread class defines the life cycle and various states of a thread.

Flow Chart of Java Thread Life Cycle

The following diagram shows the complete life cycle of a thread.

States of a Thread Life Cycle in Java

Following are the stages of the life cycle −

Java Example for Demonstrating Thread States

In this example, we're creating two threads by extending the Thread class. We're printing each state of the thread. When a thread object is created, its state is NEW; when start() method is called, state is START; when run() method is called, state is RUNNING; When a thread finished the processing the run() method, it went to DEAD state.

package com.tutorialspoint;
class ThreadDemo extends Thread {
   private Thread t;
   private String threadName;
   ThreadDemo( String name) {
      threadName = name;
      System.out.println("Thread: " + threadName + ", " + "State: New");
   }
   public void run() {
      System.out.println("Thread: " + threadName + ", " + "State: Running");
      for(int i = 4; i > 0; i--) {
         System.out.println("Thread: " + threadName + ", " + i);
      }
      System.out.println("Thread: " + threadName + ", " + "State: Dead");
   }
   public void start () {
      System.out.println("Thread: " + threadName + ", " + "State: Start");
      if (t == null) {
         t = new Thread (this, threadName);
         t.start ();
      }
   }
}
public class TestThread {
   public static void main(String args[]) {
      ThreadDemo thread1 = new ThreadDemo( "Thread-1");
      ThreadDemo thread2 = new ThreadDemo( "Thread-2");
      thread1.start();
      thread2.start();
   }   
}
Output
Thread: Thread-1, State: New
Thread: Thread-2, State: New
Thread: Thread-1, State: Start
Thread: Thread-2, State: Start
Thread: Thread-1, State: Running
Thread: Thread-2, State: Running
Thread: Thread-2, 4
Thread: Thread-2, 3
Thread: Thread-2, 2
Thread: Thread-2, 1
Thread: Thread-2, State: Dead
Thread: Thread-1, 4
Thread: Thread-1, 3
Thread: Thread-1, 2
Thread: Thread-1, 1
Thread: Thread-1, State: Dead
More Examples on Thread Life Cycle & States Example 1

In this example,we're using sleep() method to introduce some delay in processing and to show case the parallel processing using threads. We're creating two threads by extending the Thread class. We're printing each state of the thread. When a thread object is created, its state is NEW; when start() method is called, state is START; when run() method is called, state is RUNNING; in case sleep() is called, then thread goes to WAITING state; When a thread finished the processing the run() method, it went to DEAD state.

package com.tutorialspoint;
class ThreadDemo extends Thread {
   private Thread t;
   private String threadName;
   ThreadDemo( String name) {
      threadName = name;
      System.out.println("Thread: " + threadName + ", " + "State: New");
   }
   public void run() {
      System.out.println("Thread: " + threadName + ", " + "State: Running");
      try {
         for(int i = 4; i > 0; i--) {
            System.out.println("Thread: " + threadName + ", " + i);
            // Let the thread sleep for a while.
            System.out.println("Thread: " + threadName + ", " + "State: Waiting");
            Thread.sleep(50);
         }
      } catch (InterruptedException e) {
         System.out.println("Thread " +  threadName + " interrupted.");
      }
      System.out.println("Thread: " + threadName + ", " + "State: Dead");
   }

   public void start () {
      System.out.println("Thread: " + threadName + ", " + "State: Start");
      if (t == null) {
         t = new Thread (this, threadName);
         t.start ();
      }
   }
}
public class TestThread {
   public static void main(String args[]) {
      ThreadDemo thread1 = new ThreadDemo( "Thread-1");
      ThreadDemo thread2 = new ThreadDemo( "Thread-2");
      thread1.start();
      thread2.start();
   }   
}
Output
Thread: Thread-1, State: New
Thread: Thread-2, State: New
Thread: Thread-1, State: Start
Thread: Thread-2, State: Start
Thread: Thread-1, State: Running
Thread: Thread-1, 4
Thread: Thread-1, State: Waiting
Thread: Thread-2, State: Running
Thread: Thread-2, 4
Thread: Thread-2, State: Waiting
Thread: Thread-1, 3
Thread: Thread-2, 3
Thread: Thread-2, State: Waiting
Thread: Thread-1, State: Waiting
Thread: Thread-2, 2
Thread: Thread-1, 2
Thread: Thread-1, State: Waiting
Thread: Thread-2, State: Waiting
Thread: Thread-2, 1
Thread: Thread-2, State: Waiting
Thread: Thread-1, 1
Thread: Thread-1, State: Waiting
Thread: Thread-2, State: Dead
Thread: Thread-1, State: Dead
Example 2

In this example, we're creating two threads by implementing the Runnable class. We're printing each state of the thread. When a thread object is created, its state is NEW; when start() method is called, state is START; when run() method is called, state is RUNNING; in case sleep() is called, then thread goes to WAITING state; When a thread finished the processing the run() method, it went to DEAD state.

package com.tutorialspoint;
class ThreadDemo implements Runnable {
   private Thread t;
   private String threadName;
   ThreadDemo( String name) {
      threadName = name;
      System.out.println("Thread: " + threadName + ", " + "State: New");
   }
   public void run() {
      System.out.println("Thread: " + threadName + ", " + "State: Running");
      try {
         for(int i = 4; i > 0; i--) {
            System.out.println("Thread: " + threadName + ", " + i);
            // Let the thread sleep for a while.
            System.out.println("Thread: " + threadName + ", " + "State: Waiting");
            Thread.sleep(50);
         }
      } catch (InterruptedException e) {
         System.out.println("Thread " +  threadName + " interrupted.");
      }
      System.out.println("Thread: " + threadName + ", " + "State: Dead");
   }

   public void start () {
      System.out.println("Thread: " + threadName + ", " + "State: Start");
      if (t == null) {
         t = new Thread (this, threadName);
         t.start ();
      }
   }
}
public class TestThread {
   public static void main(String args[]) {
      ThreadDemo thread1 = new ThreadDemo( "Thread-1");
      ThreadDemo thread2 = new ThreadDemo( "Thread-2");
      thread1.start();
      thread2.start();
   }   
}
Output
Thread: Thread-1, State: New
Thread: Thread-2, State: New
Thread: Thread-1, State: Start
Thread: Thread-2, State: Start
Thread: Thread-1, State: Running
Thread: Thread-1, 4
Thread: Thread-1, State: Waiting
Thread: Thread-2, State: Running
Thread: Thread-2, 4
Thread: Thread-2, State: Waiting
Thread: Thread-1, 3
Thread: Thread-2, 3
Thread: Thread-2, State: Waiting
Thread: Thread-1, State: Waiting
Thread: Thread-2, 2
Thread: Thread-1, 2
Thread: Thread-1, State: Waiting
Thread: Thread-2, State: Waiting
Thread: Thread-2, 1
Thread: Thread-2, State: Waiting
Thread: Thread-1, 1
Thread: Thread-1, State: Waiting
Thread: Thread-2, State: Dead
Thread: Thread-1, State: Dead

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4