A cloud database is an organized and managed collection of data in an IT system that resides on a public, private or hybrid cloud computing platform. From an overall design and functionality perspective, a cloud database is no different than an on-premises one that runs on an organization's own data center systems. The biggest difference between them lies in how the database is deployed and managed.
For example, the same database appears identical to end users and applications, whether it's on premises or in the cloud. Depending on the particular database software that's used, cloud databases can store structured, unstructured or semistructured data, just as their on-premises counterparts do.
But using a cloud database changes the responsibilities of IT and data management teams. Cloud vendors install and manage the underlying system infrastructure and, in managed services environments, the database platform. That reduces the routine management work traditionally done by IT operations workers and database administrators (DBAs). A DBA can then take on other tasks, such as optimizing databases for applications and tracking the usage and cost of cloud database systems.
Like other IT systems, database deployments are clearly shifting toward the cloud. In a report published in December 2023, Gartner said cloud databases now account for more than half of total database management system (DBMS) revenues worldwide and nearly all the revenue growth in the market. Also, in a survey of 753 cloud users conducted in late 2023 by IT management tools vendor Flexera, 65% said their organizations were using data warehouses in the public cloud, while 57% had adopted cloud-based relational database services and 44% were using NoSQL ones. All those numbers were up significantly from the previous edition of the annual survey.
This comprehensive guide to cloud databases further explains what they are, how they work and their potential IT and business benefits for organizations, as compared with on-premises databases. You'll also find information on cloud database technologies, vendors and security issues, plus more details on database administration responsibilities in the cloud. Throughout the guide, hyperlinks point to related articles that cover those topics and others in more depth.
How cloud databases workIn businesses, databases are used to collect, organize and deliver data to executives and workers for operational and analytics applications. In general, cloud databases provide the same data processing, management and access capabilities as on-premises ones. Existing on-premises databases usually can be migrated to the cloud, along with the applications they support.
Instead of traditional software licenses, pricing is based on the use of system resources, which can be provisioned on demand as needed to meet processing workloads. Alternatively, users can reserve database instances -- typically for at least a year -- to get discounted pricing on regular workloads with consistent capacity requirements.
Organizations that are implementing databases in the public cloud choose between the following two deployment models:
In addition, some cloud providers -- Amazon Web Services (AWS) and Oracle, for example -- offer versions of their DBaaS technologies for installation in on-premises data centers as part of a private cloud or a hybrid cloud infrastructure that combines public and private clouds. As with a regular DBaaS environment, the provider deploys the databases on its own systems and manages them for customers. But it delivers the systems to a customer's data center to run there and then manages the databases remotely.
Many vendors now also offer serverless databases in the cloud. Like DBaaS, they're managed services, and the two terms are sometimes used interchangeably. But there are some differences. For example, serverless systems automatically provide the processing resources required by database applications and scale up or down as workloads fluctuate, while DBaaS commonly includes a specific amount of resources with scaling options. The term serverless is really a misnomer -- the databases do run on a cloud provider's servers. But they're effectively serverless from a customer's standpoint.
Here's an overview of what vendors and users handle in the two primary cloud database deployment models. Types of cloud databasesA wide variety of cloud databases are available, matching the different types of database technologies that can be deployed on premises. At this point, every notable database vendor offers its software in the cloud. That includes cloud-native databases developed specifically for use in cloud environments and existing on-premises databases that now support the cloud.
The following are the key types of databases that cloud users can take advantage of:
Specialized databases are also available for particular applications. Most notably, they include time series databases that hold time-stamped data stored in sequential order; vector databases designed to support large-scale similarity searches on sets of unstructured data; more conventional database search engines; and ledger databases that create an immutable record of transactions using blockchain and other cryptographic techniques.
Key cloud database management system componentsLike other types of DBMS technologies, cloud database platforms include a set of components that work together to process and manage data. The list of key components includes the following items:
Compared with running databases on premises, cloud databases offer the following potential IT and business advantages to user organizations:
On the other hand, on-premises databases might still be best for some organizations, particularly if they want to retain full control of the database environment or need to for regulatory compliance purposes. Other factors to consider when deciding between cloud and on-premises databases include the amount of data that would be transferred into and out of a cloud-based system and the choice of database administration and performance monitoring tools.
Migrating databases to the cloudAs mentioned above, migrating on-premises databases to a cloud environment can enable an organization to retire in-house IT systems and gain the other benefits of using cloud databases. Relocating a database to the cloud can also be an effective way to boost data processing efficiency and application performance as part of a broader cloud deployment.
But database migration can be a complex process. Before starting one, organizations need to consider various factors and plan a database migration strategy. For example, whether to migrate to a self-managed IaaS environment or a vendor-managed DBaaS one is a fundamental decision. Another is whether to migrate to the cloud version of the current DBMS or a different database technology. Changing databases can have financial or functional benefits, but it could also cause compatibility issues.
Even some related on-premises and cloud database technologies don't fully match up on features. For example, Microsoft's Azure SQL Database relational cloud service shares a common codebase with its SQL Server on-premises database, but there are differences between the two products that could require some reengineering of SQL Server databases before they can be migrated to Azure SQL Database. Azure SQL Managed Instance, a version of the cloud software that Microsoft developed to make database migration easier, still isn't 100% compatible with SQL Server.
Cloud DBMS vendor landscapeNot surprisingly, the top cloud platform providers -- AWS, Google Cloud, Microsoft and Oracle -- are also the leading database vendors in the cloud, according to Gartner. They all support both IaaS and DBaaS environments on their own platforms and offer different types of cloud databases, including relational, NoSQL, data warehouse and special-purpose ones. Each makes more than 10 separate database services available to users.
The following are some other prominent cloud database vendors, based on vendor rankings by consulting firms such as Gartner and Forrester Research, DBMS popularity rankings on the DB-Engines website and additional research by TechTarget editors:
Organizations can also use various open source databases in the cloud. Like other open source software, the databases are developed through a community process and their source code is openly available, although database vendors lead the development work in many cases. Popular open source relational databases include MySQL, PostgreSQL, MariaDB, Firebird and SQLite. Many NoSQL databases are also available under open source licenses.
Considerations to take into account in weighing open source vs. proprietary databases include cost, technical support needs and requirements for specific features and functionality. Open source databases can also help organizations avoid vendor lock-in because they're available from multiple providers. In addition, compatibility with technologies such as MySQL and PostgreSQL is built into some proprietary databases -- Amazon Aurora from AWS and Google's AlloyDB for PostgreSQL being two examples. As a result, users can often switch from one database service to another compatible one.
The open source and proprietary categories aren't mutually exclusive, though. While the community editions of open source databases can be deployed for free, vendors commonly offer commercial support or versions with proprietary features. For example, Oracle owns MySQL and sells several editions of the database, which is also offered commercially by AWS, Google, Microsoft and many other vendors. Similarly, PostgreSQL and MariaDB are available from a variety of vendors, including EDB, which focuses on PostgreSQL, and MariaDB PLC, which leads that database's development.
Some vendors that created open source databases have now switched to software licenses that aren't fully open source. Such licenses, often referred to as source available ones, align with most open source tenets. But they require other cloud providers looking to offer DBaaS implementations of a database to purchase a commercial license or make modified and related source code publicly available for others to use. Vendors that use these kinds of licenses include Couchbase, MongoDB, Redis, Cockroach Labs and Elastic.
What to evaluate when choosing a cloud databaseThe database is one of the most important technologies in any IT environment. Here are some of the features and issues organizations should examine when they evaluate cloud databases for planned deployments:
The most straightforward approach for deploying cloud databases is to use a single public cloud platform. That ensures consistency on the underlying cloud infrastructure and a single cloud provider to work with, even if multiple DBaaS vendors are involved. But it might not always be feasible or meet an organization's IT and business needs. As a result, IT and data management teams might need to consider the following architectural strategies.
Hybrid cloud architectureOne option is deploying databases across a hybrid cloud, putting some of them in a public cloud and others in a private cloud that's set up in an on-premises data center. Alexander Wurm, a senior analyst at advisory services firm Nucleus Research, said using a hybrid cloud enables organizations to "reap the benefits of the modern cloud, such as regular updates and elastic scalability, without interfering with the security and reliability of existing on-premises infrastructure in support of mission-critical workloads."
Some of the items to consider when planning a hybrid cloud database strategy include the following:
A multi-cloud database architecture involves the use of multiple public cloud platforms. It can help avoid cloud provider lock-in and enable organizations to deploy different databases and applications in the cloud platform that best suits them. A multi-cloud strategy can also be incorporated into a hybrid cloud environment for an even more expansive approach to database deployment.
For organizations looking to take advantage of more than one public cloud, multi-cloud database management best practices include the following steps:
As mentioned above, cloud database security isn't all on the vendor. What it handles can vary from vendor to vendor. But under the shared responsibility model for cloud security, users need to fully manage database security in IaaS environments where they deploy and manage the DBMS themselves. DBaaS vendors take on more responsibility for securing the database platform, but DBAs or security teams in organizations are usually still on the hook for things such as identity and access management, endpoint security, application security and some aspects of data security.
The following are some common challenges in securing cloud databases:
To help avoid data breaches and exposures, database security best practices for user organizations include changing default logins and user credentials, using self-managed cryptographic keys and enabling full security logging capabilities, among other steps.
Taking these actions can help organizations better secure their cloud databases. Cloud database management roles and responsibilitiesEven in a DBaaS or DWaaS environment, DBAs play the lead role in managing an organization's cloud databases. The difference is that the cloud vendor takes over most of the regular, ongoing administration of a database platform. Instead of handling those basic tasks directly, the DBA can step in when necessary -- for example, to adjust data backup or system maintenance schedules because of application needs.
Cloud databases also add some new responsibilities to the DBA's role. In particular, monitoring the usage and cost of cloud database systems is a critical task for a DBA. That helps organizations avoid budget overruns and identify required changes in configurations or selected performance levels.
These are the key ways that cloud systems change the responsibilities of a database administrator. Cloud database trends to watchThe following are some current and emerging trends involving cloud databases:
Craig Stedman is an industry editor who creates in-depth packages of content on analytics, data management, cybersecurity and other technology areas for TechTarget Editorial.
Freelance technology writer Robert Sheldon and former TechTarget news writer Joel Shore contributed to this article.
Continue Reading About What is a cloud database? An in-depth cloud DBMS guide Dig Deeper on Cloud app development and managementRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4