A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.rfc-editor.org/rfc/rfc9107.xml below:

Introduction There are three types of BGP deployments within Autonomous Systems (ASes) today: full mesh, confederations, and route reflection. BGP route reflection is the most popular way to distribute BGP routes between BGP speakers belonging to the same AS. However, in some situations, this method suffers from non-optimal path selection. asserts that, because the IGP cost to a given point in the network will vary across routers, "the route reflection approach may not yield the same route selection result as that of the full IBGP mesh approach." ("IBGP" stands for "Internal BGP".) One practical implication of this fact is that the deployment of route reflection may thwart the ability to achieve "hot potato routing". Hot potato routing attempts to direct traffic to the closest AS exit point in cases where no higher-priority policy dictates otherwise. As a consequence of the route reflection method, the choice of exit point for a route reflector and its clients will be the exit point that is optimal for the route reflector -- not necessarily the one that is optimal for its clients. describes a deployment approach and a set of constraints that, if satisfied, would result in the deployment of route reflection yielding the same results as the IBGP full mesh approach. This deployment approach makes route reflection compatible with the application of a hot potato routing policy. In accordance with these design rules, route reflectors have often been deployed in the forwarding path and carefully placed on the boundaries between the Point of Presence (POP) and the network core. The evolving model of intra-domain network design has enabled deployments of route reflectors outside the forwarding path. Initially, this model was only employed for new services, e.g., IP VPNs ; however, it has been gradually extended to other BGP services, including the IPv4 and IPv6 Internet. In such environments, a hot potato routing policy remains desirable. Route reflectors outside the forwarding path can be placed on the boundaries between the POP and the network core, but they are often placed in arbitrary locations in the core of large networks. Such deployments suffer from a critical drawback in the context of BGP route selection: a route reflector with knowledge of multiple paths for a given route will typically pick its best path and only advertise that best path to its clients. If the best path for a route is selected on the basis of an IGP tie-break, the path advertised will be the exit point closest to the route reflector. However, the clients are in a different place in the network topology than the route reflector. In networks where the route reflectors are not in the forwarding path, this difference will be even more acute. In addition, there are deployment scenarios where service providers want to have more control in choosing the exit points for clients based on other factors, such as traffic type, traffic load, etc. This further complicates the issue and makes it less likely for the route reflector to select the best path from the client's perspective. It follows that the best path chosen by the route reflector is not necessarily the same as the path that would have been chosen by the client if the client had considered the same set of candidate paths as the route reflector. Terminology This memo makes use of the terms defined in and . The key words " MUST ", " MUST NOT ", " REQUIRED ", " SHALL ", " SHALL NOT ", " SHOULD ", " SHOULD NOT ", " RECOMMENDED ", " NOT RECOMMENDED ", " MAY ", and " OPTIONAL " in this document are to be interpreted as described in BCP 14 when, and only when, they appear in all capitals, as shown here. Modifications to BGP Route Selection The core of this solution is the ability for an operator to specify the IGP location for which the route reflector calculates interior cost to the next hop. The IGP location is defined as a node in the IGP topology, it is identified by an IP address of this node (e.g., a loopback address), and it may be configured on a per-route-reflector basis, per set of clients, or on a per-client basis. Such configuration will allow the route reflector to select and distribute to a given set of clients routes with the shortest distance to the next hops from the position of the selected IGP location. This provides for freedom related to the route reflector's physical location and allows transient or permanent migration of this network control plane function to an arbitrary location with no impact on IP transit. The choice of specific granularity (route reflector, set of clients, or client) is configured by the network operator. An implementation is considered compliant with this document if it supports at least one such grouping category. For purposes of route selection, the perspective of a client can differ from that of a route reflector or another client in two distinct ways: These factors correspond to the issues described earlier. This document defines, for BGP route reflectors , two changes to the BGP route selection algorithm: A route reflector can implement either or both of the modifications in order to allow it to choose the best path for its clients that the clients themselves would have chosen given the same set of candidate paths. A significant advantage of these approaches is that the route reflector's clients do not need to be modified. Route Selection from a Different IGP Location In this approach, "optimal" refers to the decision where the interior cost of a route is determined during step e) of Section  "Breaking Ties (Phase 2)" of . It does not apply to path selection preference based on other policy steps and provisions. In addition to the change specified in , the text in step e) in is modified as follows. RFC 4271 reads:
e)
Remove from consideration any routes with less-preferred interior cost. The interior cost of a route is determined by calculating the metric to the NEXT_HOP for the route using the Routing Table.
This document modifies this text to read:
e)
Remove from consideration any routes with less-preferred interior cost. The interior cost of a route is determined by calculating the metric from the selected IGP location to the NEXT_HOP for the route using the shortest IGP path tree rooted at the selected IGP location.
In order to be able to compute the shortest path tree rooted at the selected IGP locations, knowledge of the IGP topology for the area/level that includes each of those locations is needed. This knowledge can be gained with the use of the link-state IGP, such as IS-IS or OSPF , or via the Border Gateway Protocol - Link State (BGP-LS) . When specifying the logical location of a route reflector for a group of clients, one or more backup IGP locations SHOULD be allowed to be specified for redundancy. Further deployment considerations are discussed in . Restriction when the BGP Next Hop Is a BGP Route In situations where the BGP next hop is a BGP route itself, the IGP metric of a route used for its resolution SHOULD be the final IGP cost to reach such a next hop. Implementations that cannot inform BGP of the final IGP metric to a recursive next hop MUST treat such paths as least preferred during next-hop metric comparisons. However, such paths MUST still be considered valid for BGP Phase 2 route selection. Multiple Route Selections A BGP route reflector as per runs a single BGP Decision Process. BGP Optimal Route Reflection (BGP ORR) may require multiple BGP Decision Processes or subsets of the Decision Process in order to consider different IGP locations or BGP policies for different sets of clients. This is very similar to what is defined in . If the required routing optimization is limited to the IGP cost to the BGP next hop, only step e) and subsequent steps as defined in need to be run multiple times. If the routing optimization requires the use of different BGP policies for different sets of clients, a larger part of the Decision Process needs to be run multiple times, up to the whole Decision Process as defined in . This is, for example, the case when there is a need to use different policies to compute different degrees of preference during Phase 1. This is needed for use cases involving traffic engineering or dedicating certain exit points for certain clients. In the latter case, the user may specify and apply a general policy on the route reflector for a set of clients. Regular path selection, including IGP perspectives for a set of clients as per , is then applied to the candidate paths to select the final paths to advertise to the clients. Deployment Considerations BGP ORR provides a model for integrating the client's perspective into the BGP route selection Decision Process for route reflectors. More specifically, the choice of BGP path takes into account either the IGP cost between the client and the next hop (rather than the IGP cost from the route reflector to the next hop) or other user-configured policies. The achievement of optimal routing between clients of different clusters relies upon all route reflectors learning all paths that are eligible for consideration. In order to satisfy this requirement, BGP ADD-PATH needs to be deployed between route reflectors. This solution can be deployed in hop-by-hop forwarding networks as well as in end-to-end tunneled environments. To avoid routing loops in networks with multiple route reflectors and hop-by-hop forwarding without encapsulation, it is essential that the network topology be carefully considered in designing a route reflection topology (see also ). As discussed in , the IGP locations of BGP route reflectors are important and have routing implications. This equally applies to the choice of the IGP locations configured on optimal route reflectors. If a backup location is provided, it is used when the primary IGP location disappears from the IGP (i.e., fails). Just like the failure of a route reflector , it may result in changing the paths selected and advertised to the clients, and in general, the post-failure paths are expected to be less optimal. This is dependent on the IGP topologies and the IGP distance between the primary and backup IGP locations: the smaller the distance, the smaller the potential impact. After selecting N suitable IGP locations, an operator can choose to enable route selection for all of them on all or on a subset of their route reflectors. The operator may alternatively deploy single or multiple (backup case) route reflectors for each IGP location or create any design in between. This choice may depend on the operational model (centralized vs. per region), an acceptable blast radius in the case of failure, an acceptable number of IBGP sessions for the mesh between the route reflectors, performance, and configuration granularity of the equipment. With this approach, an ISP can effect a hot potato routing policy even if route reflection has been moved out of the forwarding plane and hop-by-hop forwarding has been replaced by end-to-end MPLS or IP encapsulation. Compared with a deployment of ADD-PATH on all routers, BGP ORR reduces the amount of state that needs to be pushed to the edge of the network in order to perform hot potato routing. Modifying the IGP location of BGP ORR does not interfere with policies enforced before IGP tie-breaking (step e) of ) in the BGP Decision Process. Calculating routes for different IGP locations requires multiple Shortest Path First (SPF) calculations and multiple (subsets of) BGP Decision Processes. This scenario calls for more computing resources. This document allows for different granularity, such as one Decision Process per route reflector, per set of clients, or per client. A more fine-grained granularity may translate into more optimal hot potato routing at the cost of more computing power. Choosing to configure an IGP location per client has the highest precision, as each client can be associated with their ideal (own) IGP location. However, doing so may have an impact on performance (as explained above). Using an IGP location per set of clients implies a loss of precision but reduces the impact on the performance of the route reflector. Similarly, if an IGP location is selected for the whole routing instance, the lowest precision is achieved, but the impact on performance is minimal. In the last mode of operation (where an IGP location is selected for the whole routing instance), both precision and performance metrics are equal to route reflection as described in . The ability to run fine-grained computations depends on the platform/hardware deployed, the number of clients, the number of BGP routes, and the size of the IGP topology. In essence, sizing considerations are similar to the deployments of BGP route reflectors. Security Considerations The extension specified in this document provides a new metric value using additional information for computing routes for BGP route reflectors. While any improperly used metric value could impact the resiliency of the network, this extension does not change the underlying security issues inherent in the existing IBGP per . This document does not introduce requirements for any new protection measures. IANA Considerations This document has no IANA actions. References Normative References Key words for use in RFCs to Indicate Requirement Levels In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements. A Border Gateway Protocol 4 (BGP-4) This document discusses the Border Gateway Protocol (BGP), which is an inter-Autonomous System routing protocol. The primary function of a BGP speaking system is to exchange network reachability information with other BGP systems. This network reachability information includes information on the list of Autonomous Systems (ASes) that reachability information traverses. This information is sufficient for constructing a graph of AS connectivity for this reachability from which routing loops may be pruned, and, at the AS level, some policy decisions may be enforced. BGP-4 provides a set of mechanisms for supporting Classless Inter-Domain Routing (CIDR). These mechanisms include support for advertising a set of destinations as an IP prefix, and eliminating the concept of network "class" within BGP. BGP-4 also introduces mechanisms that allow aggregation of routes, including aggregation of AS paths. This document obsoletes RFC 1771. [STANDARDS-TRACK] BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP) The Border Gateway Protocol (BGP) is an inter-autonomous system routing protocol designed for TCP/IP internets. Typically, all BGP speakers within a single AS must be fully meshed so that any external routing information must be re-distributed to all other routers within that Autonomous System (AS). This represents a serious scaling problem that has been well documented with several alternatives proposed. This document describes the use and design of a method known as "route reflection" to alleviate the need for "full mesh" Internal BGP (IBGP). This document obsoletes RFC 2796 and RFC 1966. [STANDARDS-TRACK] Advertisement of Multiple Paths in BGP This document defines a BGP extension that allows the advertisement of multiple paths for the same address prefix without the new paths implicitly replacing any previous ones. The essence of the extension is that each path is identified by a Path Identifier in addition to the address prefix. Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings. Informative References Intermediate system to Intermediate system intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode Network Service (ISO 8473) International Organization for Standardization ISO/IEC 10589:2002, Second Edition OSPF Version 2 This memo documents version 2 of the OSPF protocol. OSPF is a link- state routing protocol. [STANDARDS-TRACK] BGP/MPLS IP Virtual Private Networks (VPNs) This document describes a method by which a Service Provider may use an IP backbone to provide IP Virtual Private Networks (VPNs) for its customers. This method uses a "peer model", in which the customers' edge routers (CE routers) send their routes to the Service Provider's edge routers (PE routers); there is no "overlay" visible to the customer's routing algorithm, and CE routers at different sites do not peer with each other. Data packets are tunneled through the backbone, so that the core routers do not need to know the VPN routes. [STANDARDS-TRACK] OSPF for IPv6 This document describes the modifications to OSPF to support version 6 of the Internet Protocol (IPv6). The fundamental mechanisms of OSPF (flooding, Designated Router (DR) election, area support, Short Path First (SPF) calculations, etc.) remain unchanged. However, some changes have been necessary, either due to changes in protocol semantics between IPv4 and IPv6, or simply to handle the increased address size of IPv6. These modifications will necessitate incrementing the protocol version from version 2 to version 3. OSPF for IPv6 is also referred to as OSPF version 3 (OSPFv3). Changes between OSPF for IPv4, OSPF Version 2, and OSPF for IPv6 as described herein include the following. Addressing semantics have been removed from OSPF packets and the basic Link State Advertisements (LSAs). New LSAs have been created to carry IPv6 addresses and prefixes. OSPF now runs on a per-link basis rather than on a per-IP-subnet basis. Flooding scope for LSAs has been generalized. Authentication has been removed from the OSPF protocol and instead relies on IPv6's Authentication Header and Encapsulating Security Payload (ESP). Even with larger IPv6 addresses, most packets in OSPF for IPv6 are almost as compact as those in OSPF for IPv4. Most fields and packet- size limitations present in OSPF for IPv4 have been relaxed. In addition, option handling has been made more flexible. All of OSPF for IPv4's optional capabilities, including demand circuit support and Not-So-Stubby Areas (NSSAs), are also supported in OSPF for IPv6. [STANDARDS-TRACK] North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP In a number of environments, a component external to a network is called upon to perform computations based on the network topology and current state of the connections within the network, including Traffic Engineering (TE) information. This is information typically distributed by IGP routing protocols within the network. This document describes a mechanism by which link-state and TE information can be collected from networks and shared with external components using the BGP routing protocol. This is achieved using a new BGP Network Layer Reachability Information (NLRI) encoding format. The mechanism is applicable to physical and virtual IGP links. The mechanism described is subject to policy control. Applications of this technique include Application-Layer Traffic Optimization (ALTO) servers and Path Computation Elements (PCEs). Internet Exchange BGP Route Server This document outlines a specification for multilateral interconnections at Internet Exchange Points (IXPs). Multilateral interconnection is a method of exchanging routing information among three or more External BGP (EBGP) speakers using a single intermediate broker system, referred to as a route server. Route servers are typically used on shared access media networks, such as IXPs, to facilitate simplified interconnection among multiple Internet routers. Acknowledgments The authors would like to thank , , , , , , , , , , , , , , , , , , , , , , and for their valuable input. Contributors The following persons contributed substantially to the current format of the document: Cisco Systems slitkows.ietf@gmail.com GTT Communications, Inc. Aspira Business Centre Bucharova 2928/14a 158 00 Prague 13 Stodůlky Czech Republic adam.chappell@gtt.net Authors' Addresses NTT Network Innovations robert@raszuk.net Orange bruno.decraene@orange.com cassar.christian@gmail.com erik.aman@aman.se Juniper Networks 10 Technology Park Drive Westford MA 01886 United States of America kfwang@juniper.net

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4