Convert pymc data into an InferenceData object.
All three of them are optional arguments, but at least one of trace
, prior
and posterior_predictive
must be present. For a usage example read the Creating InferenceData section on from_pymc
MultiTrace
, optional
Trace generated from MCMC sampling. Output of sample()
.
dict
, optional
Dictionary with the variable names as keys, and values numpy arrays containing prior and prior predictive samples.
dict
, optional
Dictionary with the variable names as keys, and values numpy arrays containing posterior predictive samples.
str
, optional
List of variables to calculate log_likelihood. Defaults to False. If set to True, computes log_likelihood for all observed variables.
str
, optional
List of variables to calculate log_prior. Defaults to False. If set to True, computes log_prior for all unobserved variables.
dict
of {str: array_like}, optional
Map of coordinate names to coordinate values
dict
of {str: list
of str
}, optional
Map of variable names to the coordinate names to use to index its dimensions.
Model
, optional
Model used to generate trace
. It is not necessary to pass model
if in with
context.
Save warmup iterations InferenceData object. If not defined, use default defined by the rcParams.
Save the transformed parameters in the InferenceData object. By default, these are not saved.
arviz.InferenceData
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4