A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.pymc.io/projects/docs/en/stable/api/generated/pymc.sample_prior_predictive.html below:

pymc.sample_prior_predictive — PyMC 5.23.0 documentation

pymc.sample_prior_predictive#
pymc.sample_prior_predictive(draws=500, model=None, var_names=None, random_seed=None, return_inferencedata=True, idata_kwargs=None, compile_kwargs=None, samples=None)[source]#

Generate samples from the prior predictive distribution.

Parameters:
drawsint

Number of samples from the prior predictive to generate. Defaults to 500.

modelModel (optional if in with context)
var_namesIterable[str]

A list of names of variables for which to compute the prior predictive samples. Defaults to both observed and unobserved RVs. Transformed values are not allowed.

random_seedint, RandomState or Generator, optional

Seed for the random number generator.

return_inferencedatabool

Whether to return an arviz.InferenceData (True) object or a dictionary (False). Defaults to True.

idata_kwargsdict, optional

Keyword arguments for pymc.to_inference_data()

compile_kwargs: dict, optional

Keyword arguments for pymc.pytensorf.compile_pymc().

samplesint

Number of samples from the prior predictive to generate. Deprecated in favor of draws.

Returns:
arviz.InferenceData or Dict

An ArviZ InferenceData object containing the prior and prior predictive samples (default), or a dictionary with variable names as keys and samples as numpy arrays.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4