A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.pymc.io/projects/docs/en/stable/api/generated/pymc.compute_log_likelihood.html below:

pymc.compute_log_likelihood — PyMC 5.25.1 documentation

pymc.compute_log_likelihood#
pymc.compute_log_likelihood(idata, *, var_names=None, extend_inferencedata=True, model=None, sample_dims=('chain', 'draw'), progressbar=True, compile_kwargs=None)[source]#

Compute elemwise log_likelihood of model given InferenceData with posterior group.

Parameters:
idataInferenceData

InferenceData with posterior group

var_namessequence of str, optional

List of Observed variable names for which to compute log_likelihood. Defaults to all observed variables.

extend_inferencedatabool, default True

Whether to extend the original InferenceData or return a new one

modelModel, optional
sample_dimssequence of str, default (“chain”, “draw”)
progressbarbool, default True
compile_kwargsdict[str, Any] | None

Extra compilation arguments to supply to compute_log_density()

Returns:
idataInferenceData

InferenceData with log_likelihood group


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4