Model Context Protocol (MCP) server for Lucid App integration. Enables multimodal LLMs to access and analyze Lucid diagrams through visual exports.
Before you begin, ensure you have the following:
Follow these steps to get the server running.
To install lucid-mcp-server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @smartzan63/lucid-mcp-server --client claude
Install the package globally from npm:
npm install -g lucid-mcp-server
Set the following environment variables in your terminal. Only the Lucid API key is required.
# Required for all features export LUCID_API_KEY="your_api_key_here" # Optional: For AI analysis, configure either Azure OpenAI or OpenAI # Option 1: Azure OpenAI (takes precedence) export AZURE_OPENAI_API_KEY="your_azure_openai_key" export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com" export AZURE_OPENAI_DEPLOYMENT_NAME="gpt-4o" # Option 2: OpenAI (used as a fallback if Azure is not configured) export OPENAI_API_KEY="your_openai_api_key" export OPENAI_MODEL="gpt-4o" # Optional, defaults to gpt-4o
Note: The server automatically uses Azure OpenAI if
AZURE_OPENAI_API_KEY
is set. If not, it falls back to OpenAI ifOPENAI_API_KEY
is provided.
Test your installation using the MCP Inspector:
npx @modelcontextprotocol/inspector lucid-mcp-server
Once the server is running, you can interact with it using natural language or by calling its tools directly.
Basic commands (works with just a Lucid API key):
AI Analysis (requires Azure OpenAI or OpenAI setup):
Lists documents in your Lucid account.
keywords
(string, optional): Search keywords to filter documents.{ "keywords": "architecture diagram" }
Gets document metadata and can optionally perform AI analysis on its visual content.
documentId
(string): The ID of the document from the Lucid URL.analyzeImage
(boolean, optional): Set to true
to perform AI analysis. â ï¸ Requires Azure or OpenAI key.pageId
(string, optional): The specific page to export (default: "0_0").{ "documentId": "demo-document-id-here-12345678/edit", "analyzeImage": true }
You can integrate the server directly into Visual Studio Code.
Method 1: Through VS Code UI (Recommended)Ctrl+Shift+P
or Cmd+Shift+P
).lucid-mcp-server
.Click the "Install in VS Code" badge at the top of this README, then follow the on-screen prompts. You will need to configure the environment variables manually in your settings.json
.
Add the following JSON to your VS Code settings.json
file. This method provides the most control and is useful for custom setups.
{ "mcp": { "servers": { "lucid-mcp-server": { "type": "stdio", "command": "lucid-mcp-server", "env": { "LUCID_API_KEY": "${input:lucid_api_key}", "AZURE_OPENAI_API_KEY": "${input:azure_openai_api_key}", "AZURE_OPENAI_ENDPOINT": "${input:azure_openai_endpoint}", "AZURE_OPENAI_DEPLOYMENT_NAME": "${input:azure_openai_deployment_name}", "OPENAI_API_KEY": "${input:openai_api_key}", "OPENAI_MODEL": "${input:openai_model}" } } }, "inputs": [ { "id": "lucid_api_key", "type": "promptString", "description": "Lucid API Key (REQUIRED)" }, { "id": "azure_openai_api_key", "type": "promptString", "description": "Azure OpenAI API Key (Optional, for AI analysis)" }, { "id": "azure_openai_endpoint", "type": "promptString", "description": "Azure OpenAI Endpoint (Optional, for AI analysis)" }, { "id": "azure_openai_deployment_name", "type": "promptString", "description": "Azure OpenAI Deployment Name (Optional, for AI analysis)" }, { "id": "openai_api_key", "type": "promptString", "description": "OpenAI API Key (Optional, for AI analysis - used if Azure is not configured)" }, { "id": "openai_model", "type": "promptString", "description": "OpenAI Model (Optional, for AI analysis, default: gpt-4o)" } ] } }
git checkout -b feature/amazing-feature
).git commit -m 'Add amazing feature'
).git push origin feature/amazing-feature
).This project is licensed under the MIT License - see the LICENSE file for details.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4