A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223699 below:

Processing, localization and binding activity of zonadhesin suggest a function in sperm adhesion to the zona pellucida during exocytosis of the acrosome

Abstract

Zonadhesin is a sperm protein that binds in a species-specific manner to the extracellular matrix ZP (zona pellucida) of the mammalian oocyte. The pig zonadhesin precursor is a 267000-Da mosaic protein with a Type I membrane topology and a large extracellular region comprising meprin/A5 antigen/mu receptor tyrosine phosphatase, mucin and five tandem von Willebrand D (VWD) domains. Multiple mature forms of zonadhesin in the sperm head differ in their avidities for the ZP. To determine the potential functions of zonadhesin forms in gamete adhesion, we characterized the processing, activation and localization of protein in pig spermatozoa. The predominant polypeptides of processed zonadhesin were M(r) 300000 (p300), 105000 (p105) and 45000 (p45). p45 and p105, comprised primarily the D1, D2-D3 domains respectively, and were N-glycosylated. p300 was heavily O-glycosylated, and spanned the meprin/A5 antigen/mu receptor tyrosine phosphatase, mucin and D0 domains. Hydrolysis of the precursor polypeptide occurred in the testis, and N-terminal sequencing of p45 and p105 identified Asp806-Pro and Asp1191-Pro in the D1 and D2 domains respectively as bonds cleaved in the protein's functional maturation. Testicular zonadhesin was extractable with non-ionic detergents, and localized to the developing outer acrosomal membrane of round and elongating spermatids. As spermatozoa transited the epididymis, most of the protein became incorporated into an extraction-resistant fraction, and the proportions of active and of multimeric zonadhesins in the cells increased. Zonadhesin localized to the perimeter of the acrosome in intact ejaculated spermatozoa and to the leading edge of acrosomal matrix overlying cells with disrupted acrosomal membranes. We conclude that the zonadhesin precursor is specifically proteolysed, glycosylated and assembled into particulate structures in the distal parts of the acrosome where it may mediate specific adhesion to the ZP during the initial stages of acrosomal exocytosis.

Full Text

The Full Text of this article is available as a PDF (469.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cornwall G. A., Chang T. S. Characterization of sulfhydryl proteins involved in the maintenance of flagellar straightness in hamster spermatozoa. J Androl. 1990 Mar-Apr;11(2):168–181. [PubMed] [Google Scholar]
  2. Flaherty S. P., Olson G. E. Ultrastructural analysis of the acrosome reaction in a population of single guinea pig sperm. Anat Rec. 1991 Feb;229(2):186–194. doi: 10.1002/ar.1092290205. [DOI] [PubMed] [Google Scholar]
  3. Florman H. M., Storey B. T. Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev Biol. 1982 May;91(1):121–130. doi: 10.1016/0012-1606(82)90015-x. [DOI] [PubMed] [Google Scholar]
  4. Gao Z., Garbers D. L. Species diversity in the structure of zonadhesin, a sperm-specific membrane protein containing multiple cell adhesion molecule-like domains. J Biol Chem. 1998 Feb 6;273(6):3415–3421. doi: 10.1074/jbc.273.6.3415. [DOI] [PubMed] [Google Scholar]
  5. Glabe C. G., Vacquier V. D. Species specific agglutination of eggs by bindin isolated from sea urchin sperm. Nature. 1977 Jun 30;267(5614):836–838. doi: 10.1038/267836a0. [DOI] [PubMed] [Google Scholar]
  6. Haden N. P., Hickox J. R., Whisnant C. S., Hardy D. M. Systematic characterization of sperm-specific membrane proteins in swine. Biol Reprod. 2000 Dec;63(6):1839–1847. doi: 10.1095/biolreprod63.6.1839. [DOI] [PubMed] [Google Scholar]
  7. Hardy D. M., Garbers D. L. A sperm membrane protein that binds in a species-specific manner to the egg extracellular matrix is homologous to von Willebrand factor. J Biol Chem. 1995 Nov 3;270(44):26025–26028. doi: 10.1074/jbc.270.44.26025. [DOI] [PubMed] [Google Scholar]
  8. Hardy D. M., Garbers D. L. Species-specific binding of sperm proteins to the extracellular matrix (zona pellucida) of the egg. J Biol Chem. 1994 Jul 22;269(29):19000–19004. [PubMed] [Google Scholar]
  9. Hickox J. R., Bi M., Hardy D. M. Heterogeneous processing and zona pellucida binding activity of pig zonadhesin. J Biol Chem. 2001 Aug 28;276(44):41502–41509. doi: 10.1074/jbc.M106795200. [DOI] [PubMed] [Google Scholar]
  10. Huang T. T., Fleming A. D., Yanagimachi R. Only acrosome-reacted spermatozoa can bind to and penetrate zona pellucida: a study using the guinea pig. J Exp Zool. 1981 Aug;217(2):287–290. doi: 10.1002/jez.1402170215. [DOI] [PubMed] [Google Scholar]
  11. Lea I. A., Sivashanmugam P., O'Rand M. G. Zonadhesin: characterization, localization, and zona pellucida binding. Biol Reprod. 2001 Dec;65(6):1691–1700. doi: 10.1095/biolreprod65.6.1691. [DOI] [PubMed] [Google Scholar]
  12. Lidell Martin E., Johansson Malin E. V., Hansson Gunnar C. An autocatalytic cleavage in the C terminus of the human MUC2 mucin occurs at the low pH of the late secretory pathway. J Biol Chem. 2003 Feb 11;278(16):13944–13951. doi: 10.1074/jbc.M210069200. [DOI] [PubMed] [Google Scholar]
  13. Lopo A. C., Glabe C. G., Lennarz W. J., Vacquier V. D. Sperm-egg binding events during sea urchin fertilization. Ann N Y Acad Sci. 1982;383:405–425. doi: 10.1111/j.1749-6632.1982.tb23181.x. [DOI] [PubMed] [Google Scholar]
  14. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  15. Naaby-Hansen S., Flickinger C. J., Herr J. C. Two-dimensional gel electrophoretic analysis of vectorially labeled surface proteins of human spermatozoa. Biol Reprod. 1997 Mar;56(3):771–787. doi: 10.1095/biolreprod56.3.771. [DOI] [PubMed] [Google Scholar]
  16. Olson G. E., Winfrey V. P., Garbers D. L., Noland T. D. Isolation and characterization of a macromolecular complex associated with the outer acrosomal membrane of bovine spermatozoa. Biol Reprod. 1985 Oct;33(3):761–779. doi: 10.1095/biolreprod33.3.761. [DOI] [PubMed] [Google Scholar]
  17. Olson G. E., Winfrey V. P., NagDas S. K. Acrosome biogenesis in the hamster: ultrastructurally distinct matrix regions are assembled from a common precursor polypeptide. Biol Reprod. 1998 Feb;58(2):361–370. doi: 10.1095/biolreprod58.2.361. [DOI] [PubMed] [Google Scholar]
  18. Olson G. E., Winfrey V. P. Structure of acrosomal matrix domains of rabbit sperm. J Struct Biol. 1994 Jan-Feb;112(1):41–48. doi: 10.1006/jsbi.1994.1005. [DOI] [PubMed] [Google Scholar]
  19. Olson G. E., Winfrey V. P. Structure of membrane domains and matrix components of the bovine acrosome. J Ultrastruct Res. 1985 Jan;90(1):9–25. doi: 10.1016/0889-1605(85)90113-2. [DOI] [PubMed] [Google Scholar]
  20. Olson Gary E., Winfrey Virginia P., Nagdas Subir K. Structural modification of the hamster sperm acrosome during posttesticular development in the epididymis. Microsc Res Tech. 2003 May 1;61(1):46–55. doi: 10.1002/jemt.10316. [DOI] [PubMed] [Google Scholar]
  21. Primakoff P., Myles D. G., Bellvé A. R. Biochemical analysis of the released products of the mammalian acrosome reaction. Dev Biol. 1980 Dec;80(2):324–331. doi: 10.1016/0012-1606(80)90408-x. [DOI] [PubMed] [Google Scholar]
  22. Vacquier V. D. Evolution of gamete recognition proteins. Science. 1998 Sep 25;281(5385):1995–1998. doi: 10.1126/science.281.5385.1995. [DOI] [PubMed] [Google Scholar]
  23. Vance J. E., LeBlanc D. A., London R. E. Cleavage of the X-Pro peptide bond by pepsin is specific for the trans isomer. Biochemistry. 1997 Oct 28;36(43):13232–13240. doi: 10.1021/bi970918b. [DOI] [PubMed] [Google Scholar]
  24. Vance J. E., LeBlanc D. A., Wingfield P., London R. E. Conformational selectivity of HIV-1 protease cleavage of X-Pro peptide bonds and its implications. J Biol Chem. 1997 Jun 20;272(25):15603–15606. doi: 10.1074/jbc.272.25.15603. [DOI] [PubMed] [Google Scholar]
  25. Vanhoof G., Goossens F., De Meester I., Hendriks D., Scharpé S. Proline motifs in peptides and their biological processing. FASEB J. 1995 Jun;9(9):736–744. [PubMed] [Google Scholar]
  26. Yaron A., Naider F. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol. 1993;28(1):31–81. doi: 10.3109/10409239309082572. [DOI] [PubMed] [Google Scholar]

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4