It has not yet been peer reviewed by a journal.
The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.
AbstractPolymerase Chain Reaction (PCR) requires thermal cycling to melt DNA and proceed through the subsequent cycles of DNA synthesis needed for exponential amplification. Previously, we engineered a superhelicase, with enhanced processivity and speed, to replace this traditional PCR melting step with enzymatic DNA unwinding while retaining desired PCR characteristics, such as multi-kb amplicon size and applicability to cloning and gene editing outcome assessment. This isothermal amplification method is named SHARP (SSB-Helicase Assisted Rapid PCR) because single-stranded DNA binding protein (SSB) and superhelicases are added to standard PCR reagents. Here, we show that SHARP can be effective for DNA sequences that PCR is unable to amplify or that produce side products of. SHARP is demonstrated to be capable of amplifying up to six identical repeats of the Widom 601 nucleosome positioning sequence and up to 35 identical repeats of ankyrin sequence. We also show that a sequence with 91% AT-content can be amplified using SHARP and that the amplification product can be validated using single-molecule optical tweezers experiments.
Full Text AvailabilityThe license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4