Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).
Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there—energy technology transformation pathways in the EMF27 scenarios. Climatic Change 123, 369–382 (2014).
Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, Cambridge, 2014).
Bruckner, T. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, Cambridge, 2014).
Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl Acad. Sci. USA 112, 6277–6282 (2015).
Arvesen, A., Bright, R. M. & Hertwich, E. G. Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation. Energy Policy 39, 7448–7454 (2011).
Czyrnek-Delêtre, M. M., Chiodi, A., Murphy, J. D. & Gallachóir, B. P. Ó. Impact of including land-use change emissions from biofuels on meeting GHG emissions reduction targets: the example of Ireland. Clean Technol. Environ. Policy 18, 1745–1758 (2016).
Dale, M. & Benson, S. M. Energy balance of the global photovoltaic (PV) industry—is the PV industry a net electricity producer? Environ. Sci. Technol. 47, 3482–3489 (2013).
Daly, H. E., Scott, K., Strachan, N. & Barrett, J. Indirect CO2 emission implications of energy system pathways: Linking IO and TIMES models for the UK. Environ. Sci. Technol. 49, 10701–10709 (2015).
Gibon, T. et al. A methodology for integrated, multiregional life cycle assessment scenarios under large-scale technological change. Environ. Sci. Technol. 49, 11218–11226 (2015).
Arvesen, A. & Hertwich, E. G. Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment. Environ. Res. Lett. 6, 045102 (2011).
Scott, K., Daly, H., Barrett, J. & Strachan, N. National climate policy implications of mitigating embodied energy system emissions. Climatic Change 136, 325–338 (2016).
Portugal-Pereira, J. et al. Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story. Energy 115(2), 1424–1435 (2016).
Masanet, E. et al. Life-cycle assessment of electric power systems. Annu. Rev. Environ. Resour. 38, 107–136 (2013).
Creutzig, F. et al. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nat. Clim. Change 2, 320–327 (2012).
Sathaye, J. et al. in IPCC Special Report on Renewable Energy Sources and Climate change Mitigation (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, Cambridge, 2011).
Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).
Luderer, G. et al. Description of the REMIND Model (Version 1.6) (Social Science Research Network, 2015).
Arvesen, A., Luderer, G., Pehl, M., Bodirsky, B. L. & Hertwich, E. G. Deriving life cycle assessment coefficients for application in integrated assessment modelling. Environ. Model. Softw. 99, 111–125 (2018).
Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).
Bodirsky, B. L. et al. N2O emissions from the global agricultural nitrogen cycle—current state and future scenarios. Biogeosciences 9, 4169–4197 (2012).
Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).
Life Cycle Inventory Database v.2.2 (Ecoinvent, accessed 29 January 2016); http://www.ecoinvent.org/database/older-versions/ecoinvent-version-2/ecoinvent-version-2.html
Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).
Global Mitigation of Non-CO 2 Greenhouse Gases: 2010-2030 EPA-430-R-13-011 (EPA, 2013).
Hertwich, E. G. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611 (2013).
Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).
Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).
Wise, M. et al. The Implications of Limiting CO 2 Concentrations for Agriculture, Land Use, Land-use Change Emissions and Bioenergy (US Department of Energy, 2009).
Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 6, 034017 (2011).
Mäkinen, K. & Khan, S. Policy considerations for greenhouse gas emissions from freshwater reservoirs. Water Altern. 3, 91–105 (2010).
The Common Integrated Assessment Model (CIAM) Documentation (ADVANCE wiki, accessed 20 February 2017); http://themasites.pbl.nl/models/advance/index.php/ADVANCE_wiki
Arvizu, D. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, Cambridge, 2011).
Iyer, G. et al. Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technol. Forecast. Soc. Change 90(A), 103–118 (2015).
Demski, C., Spence, A. & Pidgeon, N. Effects of exemplar scenarios on public preferences for energy futures using the my2050 scenario-building tool. Nat. Energy 2, 17027 (2017).
de Groot, J. I. M., Steg, L. & Poortinga, W. Values, perceived risks and benefits, and acceptability of nuclear energy. Risk Anal. 33, 307–317 (2013).
Lenzen, M. Life cycle energy and greenhouse gas emissions of nuclear energy: A review. Energy Convers. Manag. 49, 2178–2199 (2008).
Pauliuk, S., Arvesen, A., Stadler, K. & Hertwich, E. G. Industrial ecology in integrated assessment models. Nat. Clim. Change 7, 13–20 (2017).
van Vuuren, D. P., Weyant, J. & de la Chesnaye, F. Multi-gas scenarios to stabilize radiative forcing. Energy Econ. 28, 102–120 (2006).
Strefler, J., Luderer, G., Aboumahboub, T. & Kriegler, E. Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Climatic Change. 125, 319–331 (2014).
Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J. & den Elzen, M. G. J. Long-term reduction potential of non-CO2 greenhouse gases. Environ. Sci. Policy 10, 85–103 (2007).
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3