A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.nature.com/articles/s41550-019-0807-y below:

The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA

  • Winn, J. N. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1949–1966 (Springer, 2018).

  • Fulton, B. J. et al. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    Article  ADS  Google Scholar 

  • Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  • Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. 190, 1–42 (2010).

    Article  ADS  Google Scholar 

  • Duchêne, G. & Kraus, A. Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269–310 (2013).

    Article  ADS  Google Scholar 

  • Althaus, L. G., Córsico, A. H., Isern, J. & García-Berro, E. Evolutionary and pulsational properties of white dwarf stars. Astron. Astrophys. Rev. 18, 471–566 (2010).

    Article  ADS  Google Scholar 

  • Veras, D. Post-main-sequence planetary system evolution. R. Soc. Open Sci. 3, 150571 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  • Sigurdsson, S., Richer, H. B., Hansen, B. M., Stairs, I. H. & Thorsett, S. E. A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301, 193–196 (2003).

    Article  ADS  Google Scholar 

  • Korol, V. et al. Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA. Mon. Not. R. Astron. Soc. 470, 1894–1910 (2017).

    Article  ADS  Google Scholar 

  • Korol, V., Koop, O. & Rossi, E. M. Detectability of double white dwarfs in the local group with LISA. Astrophys. J. 866, L20 (2018).

    Article  ADS  Google Scholar 

  • Robson, T., Cornish, N. J., Tamanini, N. & Toonen, S. Detecting hierarchical stellar systems with LISA. Phys. Rev. D 98, 064012 (2018).

    Article  ADS  Google Scholar 

  • Kostov, V. B., Moore, K., Tamayo, D., Jayawardhana, R. & Rinehart, S. A. Tatooine’s future: the eccentric response of Kepler’s circumbinary planets to common-envelope evolution of their host stars. Astrophys. J. 832, 183 (2016).

    Article  ADS  Google Scholar 

  • Zuckerman, B., Melis, C., Klein, B., Koester, D. & Jura, M. Ancient planetary systems are orbiting a large fraction of white dwarf stars. Astrophys. J. 722, 725–736 (2010).

    Article  ADS  Google Scholar 

  • Veras, D. & Tout, C. A. The great escape – II. Exoplanet ejection from dying multiple-star systems. Mon. Not. R. Astron. Soc. 422, 1648–1664 (2012).

    Article  ADS  Google Scholar 

  • Schleicher, D. R. G. & Dreizler, S. Planet formation from the ejecta of common envelopes. Astron. Astrophys. 563, A61 (2014).

    Article  ADS  Google Scholar 

  • Ferrari, V., Berti, E., D’Andrea, M. & Ashtekar, A. Gravitational waves emitted by extrasolar planetary systems. Int. J. Mod. Phys. D 9, 495–509 (2000).

    ADS  Google Scholar 

  • Berti, E. & Ferrari, V. Excitation of g-modes of solar-type stars by an orbiting companion. Phys. Rev. D 63, 064031 (2001).

    Article  ADS  Google Scholar 

  • Ain, A., Kastha, S. & Mitra, S. Stochastic gravitational wave background from exoplanets. Phys. Rev. D 91, 124023 (2015).

    Article  ADS  Google Scholar 

  • Cunha, J. V., Silva, F. E. & Lima, J. A. S. Gravitational waves from ultra-short period exoplanets. Mon. Not. R. Astron. Soc. 480, L28 (2018).

    Article  ADS  Google Scholar 

  • Wong, K. W. K., Berti, E., Gabella, W. E. & Holley-Bockelmann, K. On the possibility of detecting ultra-short period exoplanets with LISA. Mon. Not. R. Astron. Soc. 483, L33–L36 (2019).

    Article  ADS  Google Scholar 

  • Takahashi, R. & Seto, N. Parameter estimation for galactic binaries by LISA. Astrophys. J. 575, 1030–1036 (2002).

    Article  ADS  Google Scholar 

  • Thompson, T. A. Accelerating compact object mergers in triple systems with the Kozai resonance: a mechanism for “prompt” Type Ia supernovae, gamma-ray bursts, and other exotica. Astrophys. J. 741, 82 (2011).

    Article  ADS  Google Scholar 

  • Seto, N. Highly eccentric Kozai mechanism and gravitational-wave observation for neutron star binaries. Phys. Rev. Lett. 111, 061106 (2013).

    Article  ADS  Google Scholar 

  • Valsecchi, F., Farr, W. M., Willems, B., Deloye, C. J. & Kalogera, V. Tidally-induced apsidal precession in double white dwarfs: a new mass measurement tool with LISA. Astrophys. J. 745, 137 (2012).

    Article  ADS  Google Scholar 

  • Kremer, K., Breivik, K., Larson, S. L. & Kalogera, V. Accreting double white dwarf binaries: implications for LISA. Astrophys. J. 846, 95 (2017).

    Article  ADS  Google Scholar 

  • Breivik, K. et al. Characterizing accreting double white dwarf binaries with the Laser Interferometer Space Antenna and Gaia. Astrophys. J. 854, L1 (2018).

    Article  ADS  Google Scholar 

  • Nelemans, G., Yungelson, L. R. & Portegies Zwart, S. F. Short-period AM CVn systems as optical, X-ray and gravitational wave sources. Mon. Not. R. Astron. Soc. 349, 181–192 (2004).

    Article  ADS  Google Scholar 

  • Cutler, C. Angular resolution of the LISA gravitational wave detector. Phys. Rev. D 57, 7089–7102 (1998).

    Article  ADS  Google Scholar 

  • Sumi, T. et al. Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473, 349–352 (2011).

    Article  ADS  Google Scholar 

  • Dai, X. & Guerras, E. Probing extragalactic planets using quasar microlensing. Astrophys. J. Lett. 853, L27 (2018).

    Article  ADS  Google Scholar 

  • Korol, V., Rossi, E. M. & Barausse, E. A multimessenger study of the Milky Way’s stellar disc and bulge with LISA, Gaia, and LSST. Mon. Not. R. Astron. Soc. 483, 5518–5533 (2019).

    Article  ADS  Google Scholar 

  • Luyten, W. J. White Dwarfs (Minneapolis, University of Minnesota, 1970).

  • Agol, E. Transit surveys for Earths in the habitable zones of white dwarfs. Astrophys. J. Lett. 731, L31 (2011).

    Article  ADS  Google Scholar 

  • Spalding, C., Batygin, K. & Adams, F. C. Resonant removal of exomoons during planetary migration. Astrophys. J. 817, 18 (2016).

    Article  ADS  Google Scholar 

  • Kostov, V. B. et al. Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet. Astrophys. J. 827, 86 (2016).

    Article  ADS  Google Scholar 

  • Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    Article  ADS  Google Scholar 

  • Turrini, D., Nelson, R. P. & Barbieri, M. The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Exp. Astron. 40, 501–522 (2015).

    Article  ADS  Google Scholar 

  • Alexander, M. E., Chau, W. Y. & Henriksen, R. N. Orbital evolution of a singly condensed, close binary, by mass loss from the primary and by accretion drag on the condensed member. Astrophys. J. 204, 879–888 (1976).

    Article  ADS  Google Scholar 

  • Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).

    Article  ADS  Google Scholar 

  • Pilat-Lohinger, E., Funk, B. & Dvorak, R. Stability limits in double stars. A study of inclined planetary orbits. Astron. Astrophys. 400, 1085–1094 (2003).

    Article  ADS  Google Scholar 

  • Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).

    Article  ADS  Google Scholar 

  • Livio, M., Pringle, J. E. & Wood, K. Disks and planets around massive white dwarfs. Astrophys. J. Lett. 632, L37–L39 (2005).

    Article  ADS  Google Scholar 

  • Faedi, F., West, R. G., Burleigh, M. R., Goad, M. R. & Hebb, L. Detection limits for close eclipsing and transiting substellar and planetary companions to white dwarfs in the WASP survey. Mon. Not. R. Astron. Soc. 410, 899–911 (2011).

    Article  ADS  Google Scholar 

  • Quarles, B., Satyal, S., Kostov, V., Kaib, N. & Haghighipour, N. Stability limits of circumbinary planets: is there a pile-up in the Kepler CBPs? Astrophys. J. 856, 150 (2018).

    Article  ADS  Google Scholar 

  • Mustill, A. J. et al. Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. Mon. Not. R. Astron. Soc. 436, 2515–2521 (2013).

    Article  ADS  Google Scholar 

  • Portegies Zwart, S. Planet-mediated precision reconstruction of the evolution of the cataclysmic variable HU Aquarii. Mon. Not. R. Astron. Soc. 429, L45–L49 (2013).

    Article  ADS  Google Scholar 

  • Armano, M. et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA Pathfinder results. Phys. Rev. Lett. 116, 231101 (2016).

    Article  ADS  Google Scholar 

  • Armano, M. et al. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz. Phys. Rev. Lett. 120, 061101 (2018).

    Article  ADS  Google Scholar 

  • Adams, D. The Hitchhiker’s Guide to the Galaxy (Pan Books, 1979).

  • Cornish, N. J. & Larson, S. L. LISA data analysis: source identification and subtraction. Phys. Rev. D 67, 103001 (2003).

    Article  ADS  Google Scholar 

  • Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 450, 681–693 (2006).

    Article  ADS  Google Scholar 

  • Pepe, F. et al. ESPRESSO: the next European exoplanet hunter. Astron. Nachr. 335, 8–20 (2014).

    Article  ADS  Google Scholar 

  • Tinetti, G. et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018).

    Article  ADS  Google Scholar 

  • Penny, M. T. et al. Predictions of the WFIRST microlensing survey. I. Bound planet detection rates. Astrophys. J. Suppl. Ser. 241, 3 (2019).

    Article  ADS  Google Scholar 

  • Lagrange, A.-M. Direct imaging of exoplanets. Phil. Trans. R. Soc. Lond. Ser. A 372, 20130090 (2014).

    Article  ADS  Google Scholar 

  • Beichman, C. A. et al. Imaging young giant planets from ground and space. Publ. Astron. Soc. Pac. 122, 162 (2010).

    Article  ADS  Google Scholar 

  • Perryman, M., Hartman, J., Bakos, G. Á. & Lindegren, L. Astrometric exoplanet detection with Gaia. Astrophys. J. 797, 14 (2014).

    Article  ADS  Google Scholar 

  • Althaus, L. G., García-Berro, E., Isern, J. & Córsico, A. H. Mass-radius relations for massive white dwarf stars. Astron. Astrophys. 441, 689–694 (2005).

    Article  ADS  Google Scholar 

  • Renedo, I. et al. New cooling sequences for old white dwarfs. Astrophys. J. 717, 183–195 (2010).

    Article  ADS  Google Scholar 

  • Deeg, H. J. & Alonso, R. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 633–657 (Springer, 2018).

  • Pierens, A. & Nelson, R. P. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b. Mon. Not. R. Astron. Soc. 477, 2547–2559 (2018).

    Article  ADS  Google Scholar 

  • Foucart, F. & Lai, D. Assembly of protoplanetary disks and inclinations of circumbinary planets. Astrophys. J. 764, 106 (2013).

    Article  ADS  Google Scholar 

  • Martin, D. V. & Triaud, A. H. M. J. Planets transiting non-eclipsing binaries. Astron. Astrophys. 570, A91 (2014).

    Article  ADS  Google Scholar 

  • Martin, D. V. Circumbinary planets – II. When transits come and go. Mon. Not. R. Astron. Soc. 465, 3235–3253 (2017).

    Article  ADS  Google Scholar 

  • Holman, M. J. & Murray, N. W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005).

    Article  ADS  Google Scholar 

  • Armstrong, D. et al. Placing limits on the transit timing variations of circumbinary exoplanets. Mon. Not. R. Astron. Soc. 434, 3047–3054 (2013).

    Article  ADS  Google Scholar 

  • Kostov, V. B. et al. Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. Astrophys. J. 784, 14 (2014).

    Article  ADS  Google Scholar 

  • Liu, H.-G., Wang, Y., Zhang, H. & Zhou, J.-L. Transits of planets with small intervals in circumbinary systems. Astrophys. J. 790, 141 (2014).

    Article  ADS  Google Scholar 

  • Hermes, J. J. et al. When flux standards go wild: white dwarfs in the age of Kepler. Mon. Not. R. Astron. Soc. 468, 1946–1952 (2017).

    Article  ADS  Google Scholar 

  • Sahlmann, J., Triaud, A. H. M. J. & Martin, D. V. Gaia’s potential for the discovery of circumbinary planets. Mon. Not. R. Astron. Soc. 447, 287–297 (2015).

    Article  ADS  Google Scholar 

  • Winget, D. E. & Kepler, S. O. Pulsating white dwarf stars and precision asteroseismology. Annu. Rev. Astron. Astrophys. 46, 157–199 (2008).

    Article  ADS  Google Scholar 

  • Qian, S.-B. et al. A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae. Mon. Not. R. Astron. Soc. 422, L24–L27 (2012).

    Article  ADS  Google Scholar 

  • Beuermann, K., Dreizler, S. & Hessman, F. V. The quest for companions to post-common envelope binaries. IV. The 2:1 mean-motion resonance of the planets orbiting NN Serpentis. Astron. Astrophys. 555, A133 (2013).

    Article  ADS  Google Scholar 

  • Bennett, D. P. et al. The first circumbinary planet found by microlensing: OGLE-2007-BLG-349L(AB)c. Astron. J. 152, 125 (2016).

    Article  ADS  Google Scholar 

  • Luhn, J. K., Penny, M. T. & Gaudi, B. S. Caustic structures and detectability of circumbinary planets in microlensing. Astrophys. J. 827, 61 (2016).

    Article  ADS  Google Scholar 

  • Casertano, S. et al. Double-blind test program for astrometric planet detection with Gaia. Astron. Astrophys. 482, 699–729 (2008).

    Article  ADS  Google Scholar 

  • Sozzetti, A. et al. Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential. Mon. Not. R. Astron. Soc. 437, 497–509 (2014).

    Article  ADS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4