A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/python-pandas-dataframe-nlargest/ below:

Python | Pandas DataFrame.nlargest() - GeeksforGeeks

Python | Pandas DataFrame.nlargest()

Last Updated : 11 Jul, 2025

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages.

Pandas

is one of those packages and makes importing and analyzing data much easier. Pandas

nlargest()

method is used to get n largest values from a data frame or a series.


Syntax:
DataFrame.nlargest(n, columns, keep='first')
Parameters:
n: int, Number of values to select columns: Column to check for values or user can select column while calling too. [For example: data["age"].nsmallest(3) OR data.nsmallest(3, "age")] keep: object to set which value to select if duplicates exit. Options are 'first' or 'last'

To download the CSV file used, Click

Here.
Code #1:

Extracting Largest 5 values In this example, Largest 5 values are extracted and then compared to the other sorted by the sort_values() function. NaN values are removed before trying this method. Refer

sort_values

and

dropna()

function.

Python 1==
# importing pandas package
import pandas as pd

# making data frame from csv file
data = pd.read_csv("employees.csv")

# removing null values
data.dropna(inplace = True)

# extracting greatest 5
large5 = data.nlargest(5, "Salary")

# display
large5
Output:   Code #2:

Sorting by sort_values()

Python 1==
# importing pandas package
import pandas as pd

# making data frame from csv file 
data = pd.read_csv("employees.csv")

# removing null values
data.dropna(inplace = True)

# sorting in descending order
data.sort_values("Salary", ascending = False, inplace = True)

# displaying top 5 values
data.head()
Output:

As shown in the output image, the values returned by both functions is similar.



RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4