Last Updated : 10 Jan, 2020
scipy.stats.randint()is a uniform discrete random variable. It is inherited from the of generic methods as an instance of the
rv_discrete class. It completes the methods with details specific for this particular distribution.
Parameters :x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : uniform discrete random variableCode #1 : Creating uniform discrete random variable Python3 1==
# importing library
from scipy.stats import randint
numargs = randint .numargs
a, b = 0.2, 0.8
rv = randint (a, b)
print ("RV : \n", rv)
Output :
RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4D865848Code #2 : uniform discrete variates and probability distribution Python3 1==
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
# Random Variates
R = randint .rvs(a, b, size = 10)
print ("Random Variates : \n", R)
# PDF
x = np.linspace(randint.ppf(0.01, a, b),
randint.ppf(0.99, a, b), 10)
R = randint.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R)
Output :
Random Variates : [ 3 0 0 15 0 1 4 2 0 6] Probability Distribution : [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]Code #3 : Graphical Representation. Python3 1==
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace(0, np.minimum(rv.dist.b, 2))
print("Distribution : \n", distribution)
plot = plt.plot(distribution, rv.ppf(distribution))
Output :
Distribution : [0. 0.04081633 0.08163265 0.12244898 0.16326531 0.20408163 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959 0.48979592 0.53061224 0.57142857 0.6122449 0.65306122 0.69387755 0.73469388 0.7755102 0.81632653 0.85714286 0.89795918 0.93877551 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347 1.2244898 1.26530612 1.30612245 1.34693878 1.3877551 1.42857143 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735 1.95918367 2. ]Code #4 : Varying Positional Arguments Python3 1==
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 5, 100)
# Varying positional arguments
y1 = randint.ppf(x, a, b)
y2 = randint.pmf(x, a, b)
plt.plot(x, y1, "*", x, y2, "r--")
Output :
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4