A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/python/python-pandas-index-value_counts/ below:

Pandas Index.value_counts()-Python - GeeksforGeeks

Pandas Index.value_counts()-Python

Last Updated : 11 Jul, 2025

Python is popular for data analysis thanks to its powerful libraries and Pandas is one of the best. It makes working with data simple and efficient. The Index.value_counts() function in Pandas returns the count of each unique value in an Index, sorted in descending order so the most frequent item comes first. By default, it ignores any missing (NA) values. Example:

Python
import pandas as pd
import numpy as np

idx = pd.Index(['python', 'java', 'php'])
print(idx.value_counts())

Output
python    1
java      1
php       1
Name: count, dtype: int64

Explanation:

Syntax of Index.value_counts()

Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Parameters:

Parameter

Description

normalize

If True, returns relative frequencies (percentages) instead of raw counts.

sort

If True, sorts the result by count values.

ascending

If True, sorts counts in ascending order by default, it sorts in descending order.

bins

Groups numeric values into intervals instead of exact counts, useful for range-based grouping.

dropna

If True (default), ignores NaN values, set to False to include them.

Returns: A Pandas Series containing the counts (or frequencies) of unique values.

Examples of Index.value_counts()

Examples 1: In this example, we demonstrate the Index.value_counts() method's handling of duplicate data and the normalize parameter that converts raw counts into proportions (percentages).

Python
import pandas as pd
import numpy as np
a = pd.Index(['Python', 'Java', 'Python'])

print(a.value_counts())
print(a.value_counts(normalize=True))

Output
Python    2
Java      1
Name: count, dtype: int64
Python    0.666667
Java      0.333333
Name: proportion, dtype: float64

Explanation:

Example 2: In this example, we demonstrate the Index.value_counts() method's handling of duplicate data with sort=False to retain the original order and ascending=True to sort the counts in ascending order.

Python
import pandas as pd
import numpy as np
a = pd.Index(['Python', 'Java', 'Python'])

print(a.value_counts(sort=False))
print(a.value_counts(ascending=True))

Output
Python    2
Java      1
Name: count, dtype: int64
Java      1
Python    2
Name: count, dtype: int64

Explanation:

Example 3: In this example, we demonstrate the Index.value_counts() method's handling of NaN values with the dropna=False parameter and its ability to group numeric values into bins using the bins=2 parameter.

Python
import pandas as pd
import numpy as np
a = pd.Index(['apple', np.nan, 'banana', np.nan])
print(a.value_counts(dropna=False))

b = pd.Index([5, 15, 25, 10])
print(b.value_counts(bins=2))

Output
NaN       2
apple     1
banana    1
Name: count, dtype: int64
(4.979, 15.0]    3
(15.0, 25.0]     1
Name: count, dtype: int64

Explanation:

Related Articles:



RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4