Last Updated : 19 Feb, 2025
math.hypot() function in Python is used to compute the Euclidean distance from the origin (0, 0) to a point (x, y) in a 2D plane. It calculates the hypotenuse of a right triangle, given the lengths of the two other sides.
Example Python
import math
x = 3
y = 4
res = math.hypot(x, y)
print(res)
Explanation:
In this example, the two sides of the right triangle are 3 and 4. The hypot() function calculates the hypotenuse as:
\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.0
Thus, the output is 5.0, which is the length of the hypotenuse.
Syntax of hypot() methodmath.hypot(x, y)
Parameters
Return Type
Error
Examples of hypot() method 1. Basic Hypotenuse CalculationNote : One has to import math module before using hypot() function.
This example demonstrates how the hypot() function works with positive and negative values to compute the hypotenuse.
Python
import math
# Use of hypot function
print("hypot(3, 4) : ", math.hypot(3, 4))
# Neglects the negative sign
print("hypot(-3, 4) : ", math.hypot(-3, 4))
print("hypot(6, 6) : ", math.hypot(6, 6))
hypot(3, 4) : 5.0 hypot(-3, 4) : 5.0 hypot(6, 6) : 8.48528137423857
Explanation
This example shows an error when an incorrect number of arguments is passed to the hypot() function (more than two arguments).
Python
import math
# Use of hypot() function with incorrect number of arguments
try:
print("hypot(3, 4, 6) : ", math.hypot(3, 4, 6))
except TypeError as e:
print("Error:", e)
hypot(3, 4, 6) : 7.810249675906654
Explanation
Practical Application : Given perpendicular and base of a right angle triangle find the hypotenuse. Using Pythagorean theorem which states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
This example demonstrates how to use the hypot() function to calculate the hypotenuse of a right triangle given the perpendicular and base.
Python
from math import hypot
# Perpendicular and base
p = 3
b = 4
# Calculates the hypotenuse
print(hypot(p, b))
Hypotenuse is: 5.0
Explanation
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4