Last Updated : 23 Apr, 2025
The Exponential Distribution is a fundamental concept in probability and statistics. It describe the time between events in a Poisson process where events occur continuously and independently at a constant average rate. You can generate random numbers which follow exponential Distribution using numpy.random.exponential()
method.
Syntax : numpy.random.exponential(scale=1.0, size=None)
To generate a single random number from a default Exponential Distribution (scale=1
):
import numpy as np
random_number = np.random.exponential()
print(random_number)
Output:
0.008319485004465102
To generate multiple random numbers:
Python
random_numbers = np.random.exponential(size=5)
print(random_numbers)
Output:
Visualizing the Exponential Distribution[1.15900802 0.1997201 0.73995988 0.19688073 0.54198053]
Visualizing the generated numbers helps in understanding their behavior. Below is an example of plotting a histogram of random numbers generated using numpy.random.exponential
.
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
scale = 2
size = 1000
data = np.random.exponential(scale=scale, size=size)
sns.histplot(data, bins=30, kde=True, color='orange', edgecolor='black')
plt.title(f"Exponential Distribution (Scale={scale})")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.grid(True)
plt.show()
Output:
Exponential DistributionThe above image shows an Exponential Distribution with a scale parameter of 2. The histogram represents simulated data while the orange curve depicts the theoretical distribution.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4