Last Updated : 15 Jul, 2025
The Chi-Square Distribution is used in statistics when we add up the squares of independent random numbers that follow a standard normal distribution. It is used in hypothesis testing to check whether observed data fits a particular distribution or not. In Python you can use the numpy.random.chisquare() function to generate random numbers that follow Chi-Square Distribution.
Syntax: numpy.random.chisquare(df, size=None)
To generate a single random number from a Chi-Square Distribution with df=2 (degrees of freedom):
Python
import numpy as np
random_number = np.random.chisquare(df=2)
print(random_number)
Output :
Example 2: Generate an Array of Random Numbers4.416454073420925
To generate multiple random numbers:
Python
random_numbers = np.random.chisquare(df=2, size=5)
print(random_numbers)
Output :
Visualizing the Chi-Square Distribution[0.66656494 3.55985755 1.78678662 1.53405371 4.61716372]
Visualizing the generated numbers helps to understand the behavior of the Chi-Square distribution. You can plot a histogram or a density plot using libraries like Matplotlib and Seaborn.
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = 1
size = 1000
data = np.random.chisquare(df=df, size=size)
sns.displot(data, kind="kde", color='purple', label=f'Chi-Square (df={df})')
plt.title(f"Chi-Square Distribution (df={df})")
plt.xlabel("Value")
plt.ylabel("Density")
plt.legend()
plt.grid(True)
plt.show()
Output:
Chi-Square DistributionThe above chart shows the shape of the Chi-Square distribution for df = 1
:
df = 1
the curve is skewed to the right meaning lower values occur more frequently and higher values become rarer.RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4