Last Updated : 15 Jul, 2025
The matplotlib.pyplot.plot() is used to create 2D plots such as line graphs and scatter plots. The plot() function allows us to plot data points, customize line styles, markers and colors making it useful for various types of visualizations. In this article, we'll see how to use this function to plot data in Python.
Syntax: matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
Parameters:
Returns: A list of Line2D
objects each representing a segment of the plotted data.
There are many ways of creating plot using Matplotlib.pyplot.plot() function some of their examples are:
Example 1: Line Plots in MatplotlibHere we use Matplotlib's plot() function to create a simple line plot with the data [1, 2, 3, 4, 5].
Python
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4, 5])
plt.title('Basic Line Plot')
plt.show()
Output:
Basic Line Plot Example 2: Multiple Lines Using MatplotlibWe will plot sine and cosine functions on the same graph.
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
plt.plot(x, y1, label='Sin(x)', color='blue')
plt.plot(x, y2, label='Cos(x)', color='red', linestyle='--')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Multiple Lines Plot')
plt.legend()
plt.show()
Output:
Multiple Lines Plot Example 3: Scatter Plot with Custom MarkersWe will generate and customize scatter plot with 50 random data points featuring red circular markers.
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(42)
x = np.random.rand(50)
y = np.random.rand(50)
plt.plot(x, y, marker='o', linestyle='', color='red', label='Scatter Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot Example')
plt.legend()
plt.show()
Output:
Scatter Plot with Multiple Markers Example 4: Plotting Multiple CurvesWe are creating a line plot with two curves: a blue curve y = x^2 and an orange curve y = 1 - x^3 generating data randomly. The plot is limited to the range [0, 1] on both axes showcasing a visual representation of mathematical functions.
Python
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(19680801)
xdata = np.random.random([2, 10])
xdata1 = xdata[0, :]
xdata2 = xdata[1, :]
xdata1.sort()
xdata2.sort()
ydata1 = xdata1 ** 2
ydata2 = 1 - xdata2 ** 3
plt.plot(xdata1, ydata1, color ='tab:blue')
plt.plot(xdata2, ydata2, color ='tab:orange')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.title('matplotlib.pyplot.plot() example 2')
plt.show()
Output:
Two Curves PlotWith the flexibility to customize line styles, markers and colors Matplotlib's plot() function provides various possibilities for visualizing our data in Python.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4