Last Updated : 12 Jul, 2025
Matplotlibis an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
Matplotlib.dates.DateFormatterThe
matplotlib.dates.DateFormatter
class is used to format a tick (in seconds since the epoch) with a string of strftime format. Its base class is
matplotlib.ticker.Formatter
.
Syntax: class matplotlib.dates.DateFormatter(fmt, tz=None) Parameters:Example 1: Python3 1==
- fmt: It accepts a strftime format string for formatting and is a required argument.
- tz: It holds information regarding the timezone. If set to none it ignores the timezone information while formatting of the date string.
import numpy
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas
total_bars = 25
numpy.random.seed(total_bars)
dates = pandas.date_range('3/4/2020',
periods=total_bars,
freq='m')
diff = pandas.DataFrame(
data=numpy.random.randn(total_bars),
index=dates,
columns=['A']
)
figure, axes = plt.subplots(figsize=(10, 6))
axes.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
axes.bar(diff.index,
diff['A'],
width=25,
align='center')
Output: Example 2: Python3 1==
import matplotlib
import matplotlib.pyplot as plt
from datetime import datetime
origin = ['2020-02-05 17:17:55',
'2020-02-05 17:17:51',
'2020-02-05 17:17:49']
a = [datetime.strptime(d, '%Y-%m-%d %H:%M:%S') for d in origin]
b = ['35.764299', '20.3008', '36.94704']
x = matplotlib.dates.date2num(a)
formatter = matplotlib.dates.DateFormatter('%H:%M:%S')
figure = plt.figure()
axes = figure.add_subplot(1, 1, 1)
axes.xaxis.set_major_formatter(formatter)
plt.setp(axes.get_xticklabels(), rotation = 15)
axes.plot(x, b)
plt.show()
Output:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4