A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/python/introduction-to-numpy/ below:

NumPy Introduction - GeeksforGeeks

NumPy Introduction

Last Updated : 28 Jan, 2025

NumPy(Numerical Python) is a fundamental library for Python numerical computing. It provides efficient multi-dimensional array objects and various mathematical functions for handling large datasets making it a critical tool for professionals in fields that require heavy computation.

Key Features of NumPy

NumPy has various features that make it popular over lists.

Installing NumPy in Python

To begin using NumPy, you need to install it first. This can be done through pip command:

pip install numpy

Once installed, import the library with the alias np

import numpy as np

Creating NumPy Arrays

Example:

Python
import numpy as np

# Creating a 1D array
x = np.array([1, 2, 3])

# Creating a 2D array
y = np.array([[1, 2], [3, 4]])

# Creating a 3D array
z = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

print(x)
print(y)
print(z)

Output
[1 2 3]
[[1 2]
 [3 4]]
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]

Example:

Python
import numpy as np

a1_zeros = np.zeros((3, 3))
a2_ones = np.ones((2, 2))
a3_range = np.arange(0, 10, 2)

print(a1_zeros)
print(a2_ones)
print(a3_range)

Output
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
[[1. 1.]
 [1. 1.]]
[0 2 4 6 8]
NumPy Array Indexing

Knowing the basics of NumPy array indexing is important for analyzing and manipulating the array object.

Example:

Python
import numpy as np

# Create a 1D array
arr1d = np.array([10, 20, 30, 40, 50])

# Single element access
print("Single element access:", arr1d[2])  

# Negative indexing
print("Negative indexing:", arr1d[-1])  

# Create a 2D array
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Multidimensional array access
print("Multidimensional array access:", arr2d[1, 0]) 

Output
Single element access: 30
Negative indexing: 50
Multidimensional array access: 4

Example:

Python
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
#elements from index 1 to 3
print("Range of Elements:",arr[1:4])

#all rows, second column
print("Multidimensional Slicing:", arr[:, 1])

Output
Range of Elements: [[4 5 6]]
Multidimensional Slicing: [2 5]

Example:

Python
import numpy as np
arr = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

# Integer array indexing 
indices = np.array([1, 3, 5])
print ("Integer array indexing:", arr[indices])

# boolean array indexing 
cond = arr > 0
print ("\nElements greater than 0:\n", arr[cond])

Output
Elements at indices (0, 3), (1, 2), (2, 1),(3, 0):
 [4. 6. 0. 3.]

Elements greater than 0:
 [2.  4.  4.  6.  2.6 7.  8.  3.  4.  2. ]
NumPy Basic Operations

Element-wise operations in NumPy allow you to perform mathematical operations on each element of an array individually, without the need for explicit loops.

Example:

Python
import numpy as np

x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Addition
add = x + y  
print("Addition:",add)

# Subtraction
subtract = x - y 
print("substration:",subtract)

# Multiplication
multiply = x * y 
print("multiplication:",multiply)

# Division
divide = x / y  
print("division:", divide)

Output
Addition: [5 7 9]
substration: [-3 -3 -3]
multiplication: [ 4 10 18]
division: [0.25 0.4  0.5 ]

Example:

Python
import numpy as np

# Example array with both positive and negative values
arr = np.array([-3, -1, 0, 1, 3])

# Applying a unary operation: absolute value
result = np.absolute(arr)
print("Absolute value:", result)

Output
Absolute value: [3 1 0 1 3]

Example:

Python
import numpy as np

# Two example arrays
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

# Applying a binary operation: addition
result = np.add(arr1, arr2)

print("Array 1:", arr1)
print("Array 2:", arr2)
print("Addition Result:", result)

Output
Array 1: [1 2 3]
Array 2: [4 5 6]
Addition Result: [5 7 9]
NumPy ufuncs

NumPy provides familiar mathematical functions such as sin, cos, exp, etc. These functions also operate elementwise on an array, producing an array as output.

Example:

Python
import numpy as np

# create an array of sine values
a = np.array([0, np.pi/2, np.pi])
print ("Sine values of array elements:", np.sin(a))

# exponential values
a = np.array([0, 1, 2, 3])
print ("Exponent of array elements:", np.exp(a))

# square root of array values
print ("Square root of array elements:", np.sqrt(a))

Output:

Sine values of array elements: [  0.00000000e+00   1.00000000e+00   1.22464680e-16]
Exponent of array elements: [  1.           2.71828183   7.3890561   20.08553692]
Square root of array elements: [ 0.          1.          1.41421356  1.73205081]
NumPy Sorting Arrays

We can use a simple np.sort() method for sorting Python NumPy arrays.

Example:

Python
import numpy as np

# set alias names for dtypes
dtypes = [('name', 'S10'), ('grad_year', int), ('cgpa', float)]

# Values to be put in array
values = [('Hrithik', 2009, 8.5), ('Ajay', 2008, 8.7), 
           ('Pankaj', 2008, 7.9), ('Aakash', 2009, 9.0)]
           
# Creating array
arr = np.array(values, dtype = dtypes)
print ("\nArray sorted by names:\n",
            np.sort(arr, order = 'name'))
            
print ("Array sorted by graduation year and then cgpa:\n",
                np.sort(arr, order = ['grad_year', 'cgpa']))

Output
Array sorted by names:
 [(b'Aakash', 2009, 9. ) (b'Ajay', 2008, 8.7) (b'Hrithik', 2009, 8.5)
 (b'Pankaj', 2008, 7.9)]
Array sorted by graduation year and then cgpa:
 [(b'Pankaj', 2008, 7.9) (b'Ajay',...

Read More:



RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4