Last Updated : 10 May, 2019
Basic Terminology
PEP:PEP stands for Python Enhancement Proposal. It is a design document that describes new features for Python or its processes or environment. It also provides information to the python community. PEP is a primary mechanism for proposing major new features, for example - Python Web Server Gateway Interface, collecting the inputs of the community on the issues and documenting design decisions that have been implemented in Python.
Function Annotations – PEP 3107 :PEP-3107 introduced the concept and syntax for adding arbitrary metadata annotations to Python. It was introduced in Python3 which was previously done using external libraries in python 2.x
What are Function annotations?
Function annotations are arbitrary python expressions that are associated with various part of functions. These expressions are evaluated at compile time and have no life in python’s runtime environment. Python does not attach any meaning to these annotations. They take life when interpreted by third party libraries, for example, mypy.
Purpose of function annotations:The benefits from function annotations can only be reaped via third party libraries. The type of benefits depends upon the type of the library, for example
[def foo(a:”int”, b:”float”=5.0) -> ”int”](syntax described in detail in the next section) can be used to collect information about the type of the parameters and the return type of the function to keep track of the type change occurring in the function. ‘mypy’ is one such library.
Syntax of function annotations
They are like the optional parameters that follow the parameter name.
def foobar(a: expression, b: expression = 5):
def foobar(*args: expression, *kwargs: expression):
def foobar((a: expression, b: expression), (c: expression, d: expression)):
def foobar(a: expression)->expression:
decorator : ‘@’ name_ [‘(’ [arglist] ‘)’] NEWLINE decorators : decorator+ funcdef : [decorators] ‘def’ NAME parameters [‘->’] ‘:’ suite parameters : ‘(’ [typedarglist] ‘)’ typedarglist : (( tfpdef [‘=’ test] ‘, ’)* (‘*’ [tname] (‘, ’ tname [‘=’ test])* [‘, ’ ‘ **’ tname] | ‘**’ tname) | tfpdef [‘=’ test (‘, ’ tfpdef [‘=’ test])* [‘, ’]]) tname : NAME [‘:’ test] tfpdef : tname | ‘(’ tfplist ‘)’ tfplist : tfpdef (‘, ’ tfpdef)* [‘, ’]Visualizing Grammar :
The parse tree is formed from the above grammar to give better visualization of the syntax of the python's function and function annotations.
Sample CodeThe code below will clear the fact that the function annotations are not evaluated at run time. The code prints fibonacci series upto the 'n' positions.
Python
# Python program to print Fibonacci series
def fib(n:'int', output:'list'=[])-> 'list':
if n == 0:
return output
else:
if len(output)< 2:
output.append(1)
fib(n-1, output)
else:
last = output[-1]
second_last = output[-2]
output.append(last + second_last)
fib(n-1, output)
return output
print(fib(5))
Output: [1, 1, 2, 3, 5]
Note: Function annotations are only supported in python 3x.
Accessing Function Annotations
1. Using '__annotations__': The function annotations in the above code can be accessed by a special attribute '__annotations__'. It outputs the dictionary having a special key 'return' and other keys having name of the annotated arguments. The following code will print the annotations.
Python
# Python program to illustrate Function Annotations
def fib(n:'int', output:'list'=[])-> 'list':
if n == 0:
return output
else:
if len(output)< 2:
output.append(1)
fib(n-1, output)
else:
last = output[-1]
second_last = output[-2]
output.append(last + second_last)
fib(n-1, output)
return output
print(fib.__annotations__)
Output: {'return': 'list', 'n': 'int', 'output': 'list'}2. Using standard module 'pydoc'
: The 'pydoc' is a standard python module that returns the documentation inside a python module(if any). It has a special 'help()' method that provides an interactive shell to get help on any keyword, method, class or module. 'help()' can be used to access the function annotations. The image below shows the function annotations in the above Fibonacci series code. The module name is 'fib.py'.
3. Using standard module 'inspect': The 'inspect' module provides several useful functions to help get information about live objects such as modules, classes, methods, functions, tracebacks, frame objects, and code objects. We can use 'getfullargspec' method of the module to get complete information about the function which will contain the annotations.
Python
# Python program to illustrate Function Annotations
import inspect
def fib(n:'int', output:'list'=[])-> 'list':
if n == 0:
return output
else:
if len(output)< 2:
output.append(1)
fib(n-1, output)
else:
last = output[-1]
second_last = output[-2]
output.append(last + second_last)
fib(n-1, output)
return output
print(inspect.getfullargspec(fib))
Output: FullArgSpec(args=['n', 'output'], varargs=None, varkw=None, defaults=([], ), kwonlyargs=[], kwonlydefaults=None, annotations= {'output': 'list', 'return': 'list', 'n': 'int'})
Application of Function Annotations
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4