A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/python/create-a-pandas-dataframe-from-lists/ below:

Create a Pandas DataFrame from Lists

Create a Pandas DataFrame from Lists

Last Updated : 11 Jul, 2025

Converting lists to DataFrames is crucial in data analysis, Pandas enabling you to perform sophisticated data manipulations and analyses with ease.

List to Dataframe Example

# Simple list
data = [1, 2, 3, 4, 5]
# Convert to DataFrame
df = pd.DataFrame(data, columns=['Numbers'])

Here we will discuss different ways to create a Pandas Dataframe from the lists:

Create DataFrame from List using Dictionary

Example 1: To convert a list to a Pandas DataFrame, you can use the pd.DataFrame() constructor. This function takes a list as input and creates a DataFrame with the same number of rows and columns as the input list.

Python
# import pandas as pd
import pandas as pd

# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 
            'portal', 'for', 'Geeks']

# Calling DataFrame constructor on list
df = pd.DataFrame(lst)
print(df)

Output:

 0
0 Geeks
1 For
2 Geeks
3 is
4 portal
5 for
6 Geeks

Example 2: To use lists in a dictionary to create a Pandas DataFrame, we Create a dictionary of lists and then Pass the dictionary to the pd.DataFrame() constructor. Optionally, we can specify the column names for the DataFrame by passing a list of strings to the columns parameter of the pd.DataFrame() constructor.

Python
# importing pandas as pd 
import pandas as pd 
 
# list of name, degree, score
nme = ["aparna", "pankaj", "sudhir", "Geeku"]
deg = ["MBA", "BCA", "M.Tech", "MBA"]
scr = [90, 40, 80, 98]
 
# dictionary of lists 
dict = {'name': nme, 'degree': deg, 'score': scr} 
   
df = pd.DataFrame(dict)
   
print(df) 

Output:

 name  degree  score
0 aparna MBA 90
1 pankaj BCA 40
2 sudhir M.Tech 80
3 Geeku MBA 98
Convert List to Pandas Dataframe using zip()

To create a Pandas DataFrame from lists using zip(). We can also use the zip() function to zip together multiple lists to create a DataFrame with more columns.

Python
# import pandas as pd
import pandas as pd

# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 'portal', 'for', 'Geeks']

# list of int
lst2 = [11, 22, 33, 44, 55, 66, 77]

# Calling DataFrame constructor after zipping
# both lists, with columns specified
df = pd.DataFrame(list(zip(lst, lst2)),
               columns =['Name', 'val'])
print(df)

Output:

Name  val
0 Geeks 11
1 For 22
2 Geeks 33
3 is 44
4 portal 55
5 for 66
6 Geeks 77
Create DataFrame from List by Changing Datatype

To create a Pandas DataFrame using a multi-dimensional list with column names and dtypes specified. By specifying dtypes, we can ensure that the DataFrame is created with the correct data types.

Python
import pandas as pd

# List1 
lst = [['tom', 'reacher', 25], ['krish', 'pete', 30],
       ['nick', 'wilson', 26], ['juli', 'williams', 22]]

# Create DataFrame
df = pd.DataFrame(lst, columns=['FName', 'LName', 'Age'])

# Convert 'Age' column to float
df['Age'] = df['Age'].astype(float)

print(df)

Output:

   FName     LName   Age
0 tom reacher 25.0
1 krish pete 30.0
2 nick wilson 26.0
3 juli williams 22.0
Create DataFrame from List using Multi-dimensional List

To create a DataFrame using a multi-dimensional list, you can use the pd.DataFrame() constructor. The pd.DataFrame() constructor takes a list of lists as input and creates a DataFrame with the same number of rows and columns as the input list.

Python
# import pandas as pd
import pandas as pd 
  
# List1 
lst = [['tom', 25], ['krish', 30],
       ['nick', 26], ['juli', 22]]
  
df = pd.DataFrame(lst, columns =['Name', 'Age'])
print(df)

Output:

Name  Age
0 tom 25
1 krish 30
2 nick 26
3 juli 22
Create DataFrame from List with Index and Column Names

To create a DataFrame using a list with index and column names, you can use the pd.DataFrame() constructor with the index and columns parameters.

Python
# import pandas as pd
import pandas as pd

# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 'portal', 'for', 'Geeks']

# Calling DataFrame constructor on list
# with indices and columns specified
df = pd.DataFrame(lst, index =['a', 'b', 'c', 'd', 'e', 'f', 'g'],
                                              columns =['Names'])
print(df)

Output:

Names
a Geeks
b For
c Geeks
d is
e portal
f for
g Geeks


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4