Last Updated : 11 Jul, 2025
Pandas DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. It is generally the most commonly used Pandas object. Pandas DataFrame can be created in multiple ways using Python. Let’s discuss how to create a Pandas DataFrame from the List of Dictionaries.
Create a Pandas DataFrame from List of DictionariesBelow are the ways by which we can create a Pandas DataFrame from list of dicts:
Pandas from_records() function of DataFrame changes structured data or records into DataFrames. It converts a structured ndarray, tuple or dict sequence, or DataFrame into a DataFrame object.
Python3
import pandas as pd
# Initialise data to lists.
data = [{'Geeks': 'dataframe', 'For': 'using', 'geeks': 'list'},
{'Geeks':10, 'For': 20, 'geeks': 30}]
df = pd.DataFrame.from_records(data,index=['1', '2'])
print(df)
Output
Geeks For geeksConvert List of Dictionaries to a Pandas DataFrame Using pd.DataFrame.from_dict()
1 dataframe using list
2 10 20 30
The DataFrame.from dict() method in Pandas builds DataFrame from a dictionary of the dict or array type. By using the dictionary's columns or indexes and allowing for Dtype declaration, it builds a DataFrame object.
Python3
import pandas as pd
# Initialise data to lists.
data = [{'Geeks': 'dataframe', 'For': 'using', 'geeks': 'list'},
{'Geeks':10, 'For': 20, 'geeks': 30}]
df = pd.DataFrame.from_dict(data)
print(df)
Output
Geeks For geeksCreate a Pandas DataFrame from List of Dictionaries Using pd.json_normalize
0 dataframe using list
1 10 20 30
Pandas have a nice inbuilt function called json_normalize() to flatten the simple to moderately semi-structured nested JSON structures to flat tables.
Python3
import pandas as pd
# Initialise data to lists.
data = [{'Geeks': 'dataframe', 'For': 'using', 'geeks': 'list'},
{'Geeks':10, 'For': 20, 'geeks': 30}]
df=pd.json_normalize(data)
print(df)
Output
Geeks For geeksConvert List of Dictionaries to a Pandas DataFrame Using pd.DataFrame
0 dataframe using list
1 10 20 30
Example 1: As we know while creating a data frame from the dictionary, the keys will be the columns in the resulted Dataframe. When we create Dataframe from a list of dictionaries, matching keys will be the columns and corresponding values will be the rows of the Dataframe. If there are no matching values and columns in the dictionary, then the NaN value will be inserted into the resulting Dataframe.
Python3
# Python code demonstrate how to create
# Pandas DataFrame by lists of dicts without matching key-value pair
import pandas as pd
# Initialise data to lists.
data = [{'Geeks': 'dataframe', 'For': 'using', 'geeks': 'list', 'Portal': 10000},
{'Geeks':10, 'For': 20, 'geeks': 30}]
# Creates DataFrame.
df = pd.DataFrame(data)
# Print the data
df
Output
Geeks For geeks Portal
0 dataframe using list 10000.0
1 10 20 30 NaN
Example 2: Creating a Dataframe by explicitly providing user-defined values for both index and columns
Python3
import pandas as pd
# Initialise data to lists.
data = [{'Geeks': 'dataframe', 'For': 'using', 'geeks': 'list'},
{'Geeks': 10, 'For': 20, 'geeks': 30}]
# With two column indices, values same
# as dictionary keys
df1 = pd.DataFrame(data, index=['ind1', 'ind2'],
columns=['Geeks', 'For'])
# With two column indices with
# one index with other name
df2 = pd.DataFrame(data, index=['indx', 'indy'])
# print for first data frame
print(df1, "\n")
# Print for second DataFrame.
print(df2)
Output
Geeks For
ind1 dataframe using
ind2 10 20
Geeks For geeks
indx dataframe using list
indy 10 20 30
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4