Last Updated : 29 Aug, 2022
GroupBy is a pretty simple concept. We can create a grouping of categories and apply a function to the categories. It’s a simple concept, but it’s an extremely valuable technique that’s widely used in data science. In real data science projects, you’ll be dealing with large amounts of data and trying things over and over, so for efficiency, we use Groupby concept. Groupby concept is really important because of its ability to summarize, aggregate, and group data efficiently.
SummarizeSummarization includes counting, describing all the data present in data frame. We can summarize the data present in the data frame using describe() method. This method is used to get min, max, sum, count values from the data frame along with data types of that particular column.
Syntax:
dataframe_name.describe()
Syntax:
dataframe['column_name].unique()
Syntax:
dataframe_name['column_name].nunique()
Syntax:
dataframe.info()
Syntax:
dataframe.columns
Example:
We are going to analyze the student marks data in this example.
Python3
# importing pandas as pd for using data frame
import pandas as pd
# creating dataframe with student details
dataframe = pd.DataFrame({'id': [7058, 4511, 7014, 7033],
'name': ['sravan', 'manoj', 'aditya', 'bhanu'],
'Maths_marks': [99, 97, 88, 90],
'Chemistry_marks': [89, 99, 99, 90],
'telugu_marks': [99, 97, 88, 80],
'hindi_marks': [99, 97, 56, 67],
'social_marks': [79, 97, 78, 90], })
# display dataframe
dataframe
Output:
Python3
# describing the data frame
print(dataframe.describe())
print("-----------------------------")
# finding unique values
print(dataframe['Maths_marks'].unique())
print("-----------------------------")
# counting unique values
print(dataframe['Maths_marks'].nunique())
print("-----------------------------")
# display the columns in the data frame
print(dataframe.columns)
print("-----------------------------")
# information about dataframe
print(dataframe.info())
Output:
AggregationAggregation is used to get the mean, average, variance and standard deviation of all column in a dataframe or particular column in a data frame.
Syntax:
dataframe['column].sum()
Syntax:
dataframe['column].mean()
Syntax:
dataframe['column].std()
dataframe['column'].var()
Syntax:
dataframe['column'].min()
Syntax:
dataframe['column'].max()
Example:
In the below program we will aggregate data.
Python3
# importing pandas as pd for using data frame
import pandas as pd
# creating dataframe with student details
dataframe = pd.DataFrame({'id': [7058, 4511, 7014, 7033],
'name': ['sravan', 'manoj', 'aditya', 'bhanu'],
'Maths_marks': [99, 97, 88, 90],
'Chemistry_marks': [89, 99, 99, 90],
'telugu_marks': [99, 97, 88, 80],
'hindi_marks': [99, 97, 56, 67],
'social_marks': [79, 97, 78, 90], })
# display dataframe
dataframe
Output:
Python3
# getting all minimum values from
# all columns in a dataframe
print(dataframe.min())
print("-----------------------------------------")
# minimum value from a particular
# column in a data frame
print(dataframe['Maths_marks'].min())
print("-----------------------------------------")
# computing maximum values
print(dataframe.max())
print("-----------------------------------------")
# computing sum
print(dataframe.sum())
print("-----------------------------------------")
# finding count
print(dataframe.count())
print("-----------------------------------------")
# computing standard deviation
print(dataframe.std())
print("-----------------------------------------")
# computing variance
print(dataframe.var())
Output:
GroupingIt is used to group one or more columns in a dataframe by using the groupby() method. Groupby mainly refers to a process involving one or more of the following steps they are:
Example 1:
Python3
# importing pandas as pd for using data frame
import pandas as pd
# creating dataframe with student details
dataframe = pd.DataFrame({'id': [7058, 4511, 7014, 7033],
'name': ['sravan', 'manoj', 'aditya', 'bhanu'],
'Maths_marks': [99, 97, 88, 90],
'Chemistry_marks': [89, 99, 99, 90],
'telugu_marks': [99, 97, 88, 80],
'hindi_marks': [99, 97, 56, 67],
'social_marks': [79, 97, 78, 90], })
# group by name
print(dataframe.groupby('name').first())
print("---------------------------------")
# group by name with social_marks sum
print(dataframe.groupby('name')['social_marks'].sum())
print("---------------------------------")
# group by name with maths_marks count
print(dataframe.groupby('name')['Maths_marks'].count())
print("---------------------------------")
# group by name with maths_marks
print(dataframe.groupby('name')['Maths_marks'])
Output:
Example 2:
Python3
# importing pandas as pd for using data frame
import pandas as pd
# creating dataframe with student details
dataframe = pd.DataFrame({'id': [7058, 4511, 7014, 7033],
'name': ['sravan', 'manoj', 'aditya', 'bhanu'],
'Maths_marks': [99, 97, 88, 90],
'Chemistry_marks': [89, 99, 99, 90],
'telugu_marks': [99, 97, 88, 80],
'hindi_marks': [99, 97, 56, 67],
'social_marks': [79, 97, 78, 90], })
# group by name
print(dataframe.groupby('name').first())
print("------------------------")
# group by name with social_marks sum
print(dataframe.groupby('name')['social_marks'].sum())
print("------------------------")
# group by name with maths_marks count
print(dataframe.groupby('name')['Maths_marks'].count())
Output:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4