A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/pandas/pandas-dataframe-dtypes/ below:

Pandas DataFrame dtypes Property | Find DataType of Columns

Pandas DataFrame dtypes Property | Find DataType of Columns

Last Updated : 11 Jul, 2025

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). 

Pandas DataFrame.dtypes attribute returns a series with the data type of each column.

Example:

Python
import pandas as pd
df = pd.DataFrame({'Weight': [45, 88, 56, 15, 71],
                   'Name': ['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age': [14, 25, 55, 8, 21]})
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
df.index = index_
print(df)

Output: 

Example Output  Syntax

Syntax: DataFrame.dtypes 

Parameter : None 

Returns : data type of each column

Examples

Let's check some examples of how to find the data type of each column of a DataFrame using the dtypes property of DataFrame.

Example 1:

Now we will use the dtypes attribute to find out the data type of each column in the given DataFrame. 

Python
# return the dtype of each column
result = df.dtypes

# Print the result
print(result)

Output: 

As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given Dataframe.   

Example output Example 2:

Use the DataFrame dtypes attribute to find out the data type (dtype) of each column in the given DataFrame. 

Python
# importing pandas as pd
import pandas as pd

# Creating the DataFrame
df = pd.DataFrame({& quot
                    A&quot: [12, 4, 5, None, 1],
                    & quot
                    B&quot
                    : [7, 2, 54, 3, None],
                    & quot
                    C&quot
                    : [20, 16, 11, 3, 8],
                    & quot
                    D&quot
                    : [14, 3, None, 2, 6]})

# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']

# Set the index
df.index = index_

# Print the DataFrame
print(df)

Output:

example output

 Now we will use DataFrame.dtypes attribute to find out the data type of each column in the given DataFrame. 

Python
# return the dtype of each column
result = df.dtypes

# Print the result
print(result)

Output:

As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given DataFrame.

Check More Properties of DataFrame



RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4