Last Updated : 24 Jan, 2025
linspace() function in NumPy returns an array of evenly spaced numbers over a specified range. Unlike the range() function in Python that generates numbers with a specific step size. linspace() allows you to specify the total number of points you want in the array, and NumPy will calculate the spacing between the numbers automatically.
Let's understand with the help of an example:
Python
import numpy as np
# Generate 10 numbers between 0 and 1
array = np.linspace(0, 1, num=10)
print(array)
[0. 0.11111111 0.22222222 0.33333333 0.44444444 0.55555556 0.66666667 0.77777778 0.88888889 1. ]
Explanation :
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Parameters:
Return Type:
By default, linspace()
includes the stop
value. However, you can exclude it by setting the endpoint
parameter to False
.
import numpy as np
# Generate 10 numbers between 0 and 1
array_without_endpoint = np.linspace(0, 1, num=10, endpoint=False)
print(array_without_endpoint)
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]Getting the Step Size
retstep
parameter allows you to return the step size between each number along with the array.
import numpy as np
# Generate 5 numbers between 0 and 10 and return the step size
array, step = np.linspace(0, 10, num=5, retstep=True)
print("Step Size:", step)
Multi-Dimensional Arrays
We can also generate multi-dimensional arrays using linspace(). We can create a 2D array of numbers between 0 and 1:
Python
import numpy as np
# Create a 2D array of 5x5 numbers between 0 and 1
array_2d = np.linspace(0, 1, num=25).reshape(5, 5)
print(array_2d)
[[0. 0.04166667 0.08333333 0.125 0.16666667] [0.20833333 0.25 0.29166667 0.33333333 0.375 ] [0.41666667 0.45833333 0.5 0.54166667 0.58333333] [0.625 0.66666667 0....
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4