Last Updated : 29 Mar, 2023
numpy.exp(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements in the input array. Parameters :
array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
Return :
An array with exponential of all elements of input array.
Code 1 : Working
Python
# Python program explaining
# exp() function
import numpy as np
in_array = [1, 3, 5]
print ("Input array : ", in_array)
out_array = np.exp(in_array)
print ("Output array : ", out_array)
Output :
Input array : [1, 3, 5] Output array : [ 2.71828183 20.08553692 148.4131591 ]
Code 2 : Graphical representation
Python
# Python program showing
# Graphical representation of
# exp() function
import numpy as np
import matplotlib.pyplot as plt
in_array = [1, 1.2, 1.4, 1.6, 1.8, 2]
out_array = np.exp(in_array)
y = [1, 1.2, 1.4, 1.6, 1.8, 2]
plt.plot(in_array, y, color = 'blue', marker = "*")
# red for numpy.exp()
plt.plot(out_array, y, color = 'red', marker = "o")
plt.title("numpy.exp()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
Output : References : https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp.html .
numpy.exp() is a function in the Python NumPy library that calculates the exponential value of an input array. It returns an array with the exponential value of each element of the input array.
The syntax for using numpy.exp() is as follows:import numpy as np
np.exp(x)
Here, x is the input array or scalar value whose exponential value is to be calculated. The function returns an array with the same shape as x, with the exponential value of each element.
Examples: Python3
import numpy as np
# Calculating the exponential value of a scalar
exp_val = np.exp(3)
print(exp_val) # Output: 20.085536923187668
# Calculating the exponential value of an array
x = np.array([1, 2, 3])
exp_arr = np.exp(x)
print(exp_arr) #
Output: [ 2.71828183 7.3890561 20.08553692]
In the above example, we calculate the exponential value of a scalar 3 using np.exp(3), which returns 20.085536923187668. We also calculate the exponential value of an array [1, 2, 3] using np.exp(x), which returns [2.71828183, 7.3890561, 20.08553692].
Advantages of numpy.exp() function in Python:RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4