A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/numpy/numpy-zeros-python/ below:

numpy.zeros() in Python - GeeksforGeeks

numpy.zeros() in Python

Last Updated : 24 Jan, 2025

numpy.zeros() function creates a new array of specified shapes and types, filled with zeros. It is beneficial when you need a placeholder array to initialize variables or store intermediate results. We can create 1D array using numpy.zeros().

Let's understand with the help of an example:

Python
import numpy as np

#Create 1D array
arr = np.zeros(5)
print(arr)
Syntax of numpy.zeros()

numpy.zeros(shape, dtype = None, order = 'C')

Parameters: Return Value Creating 2D Array

by using NumPy, we can easily create a 2D array filled with zeros using the numpy.zeros() function.

Python
import numpy as np

# Creating a 2D array with 3 rows and 4 columns
arr = np.zeros((3, 4))

print(arr)

Output
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
Specifying Data Type (dtype)

dtype parameter in numpy.zeros() defines the type of data stored in the array.

Python
import numpy as np 

# Create an array of tuples with zeros
d = np.zeros((2, 2), dtype=[('f', 'f4'), ('i', 'i4')])
print(d)

Output
[[(0., 0) (0., 0)]
 [(0., 0) (0., 0)]]
C vs F Order

Choosing the right memory layout can significantly improve performance, depending on our specific operations. If your operations are row-wise, use C-order. If they are column-wise, use F-order.

Python
import numpy as np 
# Create a 2x3 array in C-order
e = np.zeros((2, 3), order='C')
print("C-order array:", e)

# Create a 2x3 array in F-order
f = np.zeros((2, 3), order='F')
print("F-order array:", f)

Output
C-order array: [[0. 0. 0.]
 [0. 0. 0.]]
F-order array: [[0. 0. 0.]
 [0. 0. 0.]]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4