A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/nlp/machine-translation-with-transformer-in-python/ below:

Machine Translation with Transformer in Python

Machine Translation with Transformer in Python

Last Updated : 23 Jul, 2025

Machine translation means converting text from one language into another. Tools like Google Translate use this technology. Many translation systems use transformer models which are good at understanding the meaning of sentences. In this article, we will see how to fine-tune a Transformer model from Hugging Face to translate English sentences into Hindi.

Understanding Transformers

Transformer is a deep learning model used in natural language processing (NLP) because it can understand how words in a sentence relate to each other even if they are far apart. It has two main parts:

  1. Encoder: Reads and understands the input sentence (English in our example).
  2. Decoder: Creates the translated sentence in the target language (Hindi here).

The most important feature of Transformers is self-attention which helps the model focus on the right words while translating. Unlike older models that process words one by one, it look at the whole sentence at the same time which makes them faster and more efficient. In this article we will be using a pre-trained Transformer model from Helsinki-NLP which is an open-source project that offers many translation models.

Implementation for Machine Translation using Transformers

Transformers have improved the quality and efficiency of machine translation models. Here we will be using hugging Face's transformer models to perform English to Hindi translation.

Step 1: Installing Libraries

Before starting make sure that we have the required libraries installed in our environment. If not then use the following commands to install them:

Python
!pip install datasets
!pip install transformers
!pip install sentencepiece
!pip install transformers[torch]`
!pip install sacrebleu
!pip install evaluate
!pip install sacrebleu
!pip install accelerate -U
!pip install gradio 
!pip install kaleido cohere  openai tiktoken typing-extensions==4.5.0
Installing

We will use cfilt/iitb-english-hindi dataset available on Hugging face.

IIT Bombay English-Hindi corpus contains parallel English-Hindi sentences sourced by IIT Bombay’s Center for Indian Language Technology (CFILT). It is used to train and evaluate English-Hindi machine translation models. We can find more details about this dataset’s size, source and characteristics in the official CFILT or IIT Bombay documentation.

Step 2: Loading the Dataset

Load the dataset from Hugging Face. It provides splits like "train", "validation" and "test" which we will use to train and evaluate our model.

Python
from datasets import load_dataset
dataset = load_dataset("cfilt/iitb-english-hindi")
Loading the Dataset Step 3: Load Model and Tokenizer

We will be using the pre-trained model Helsinki-NLP/opus-mt-en-hi for English to Hindi translation. The AutoTokenizer and AutoModelForSeq2SeqLM classes from the Hugging Face transformers library allow us to load the tokenizer and model. The tokenizer converts text to tokens and the model performs the translation.

Python
max_length = 256

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
Loading Model Step 4: Example Translation

Test the model with a sentence from the validation set. The input sequence is: 'Rajesh Gavre, the President of the MNPA teachers association, honoured the school by presenting the award'.

Python
article = dataset['validation'][2]['translation']['en']
inputs = tokenizer(article, return_tensors="pt")

translated_tokens = model.generate(
     **inputs,  max_length=256
 )
tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]

Output:

'एमएनएपी शिक्षकों के राष्ट्रपति, राजस्वीवर ने इस पुरस्कार को पेश करके स्कूल की प्रतिष्ठा की'

Let's check the expected output using the following code.

Python
dataset['validation'][2]['translation']['hi']

Output:

'मनपा शिक्षक संघ के अध्यक्ष राजेश गवरे ने स्कूल को भेंट देकर सराहना की।'

Step 5: Tokenize the Dataset

To fine-tune the model, we need to preprocess the dataset. This involves tokenizing both the input (English) and target (Hindi) sentences and check that they are properly formatted for the model.

Python
def preprocess_function(examples):
  inputs = [ex["en"] for ex in examples["translation"]]
  targets = [ex["hi"] for ex in examples["translation"]]

  model_inputs = tokenizer(inputs, max_length=max_length, truncation=True)
  labels = tokenizer(targets,max_length=max_length, truncation=True)
  model_inputs["labels"] = labels["input_ids"]

  return model_inputs


We map each of the examples of our dataset using the map function.

Python
tokenized_datasets_validation = dataset['validation'].map(
    preprocess_function,
    batched= True,
    remove_columns=dataset["validation"].column_names,
    batch_size = 2
)

tokenized_datasets_test = dataset['test'].map(
    preprocess_function,
    batched= True,
    remove_columns=dataset["test"].column_names,
    batch_size = 2)
Using map function. Step 5: Define the Data Collator

DataCollatorForSeq2Seq helps to batch the tokenized data with proper padding and formatting for seq2seq training. It handles tasks such as padding sequences to the maximum length in a batch helps in creating attention masks and organizing the data.

Python
from transformers import DataCollatorForSeq2Seq

data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
Step 6: Set Model Training Parameters

To fine-tune the model, we need to specify training parameters. In this case, we freeze some layers and train only the last few layers to fine-tune the model effectively.

Python
for parameter in model.parameters():
    parameter.requires_grad = True
num_layers_to_freeze = 10  
for layer_index, layer in enumerate(model.model.encoder.layers):
    print
    if layer_index < len(model.model.encoder.layers) - num_layers_to_freeze:
        for parameter in layer.parameters():
            parameter.requires_grad = False

num_layers_to_freeze = 10  
for layer_index, layer in enumerate(model.model.decoder.layers):
    print
    if layer_index < len(model.model.encoder.layers) - num_layers_to_freeze:
        for parameter in layer.parameters():
            parameter.requires_grad = False
Step 7: Evaluate the Model

We use SacreBLEU for evaluating the model's performance. BLEU (Bilingual Evaluation Understudy) is a metric used for evaluating machine translation models.

Python
import evaluate

metric = evaluate.load("sacrebleu")

import numpy as np


def compute_metrics(eval_preds):
    preds, labels = eval_preds
    if isinstance(preds, tuple):
        preds = preds[0]

    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    decoded_preds = [pred.strip() for pred in decoded_preds]
    decoded_labels = [[label.strip()] for label in decoded_labels]

    result = metric.compute(predictions=decoded_preds, references=decoded_labels)
    return {"bleu": result["score"]}
Evaluate the Model Step 8: Train the Model

We define the training parameters using Seq2SeqTrainingArguments from Hugging Face.

Python
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

from transformers import Seq2SeqTrainingArguments

model.to(device)
training_args = Seq2SeqTrainingArguments(
    f"finetuned-nlp-en-hi",
    gradient_checkpointing=True,
    per_device_train_batch_size=32,
    learning_rate=1e-5,
    warmup_steps=2,
    max_steps=2000,
    fp16=True,
    optim='adafactor',
    per_device_eval_batch_size=16,
    metric_for_best_model="eval_bleu",
    predict_with_generate=True,
    push_to_hub=False,
)


We start training with Seq2SeqTrainer.

Python
from transformers import Seq2SeqTrainer

trainer = Seq2SeqTrainer(
    model,
    training_args,
    train_dataset=tokenized_datasets_test,
    eval_dataset=tokenized_datasets_validation,
    data_collator=data_collator,
    tokenizer=tokenizer,
    compute_metrics=compute_metrics,
)

trainer.train()

Output:

Training Step 9: Building an Interactive Gradio App

We can create an interactive Gradio app to translate English sentences to Hindi.

Python
import gradio as gr


def translate(text):
  inputs = tokenizer(text, return_tensors="pt").to(device)
  translated_tokens = model.generate(**inputs,  max_length=256)
  results = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
  return results

interface = gr.Interface(fn=translate,inputs=gr.Textbox(lines=2, placeholder='Text to translate'),
                        outputs='text')

interface.launch()

Output:

Gradio Interface

Get complete Notebook Link from here.

Using Transformers to translate languages shows how AI can transform the way we connect and share ideas.



RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4