Last Updated : 13 Aug, 2025
Try it on GfG Practice
Given two sorted arrays, a[] and b[], find the median of these sorted arrays. Assume that the two sorted arrays are merged and then median is selected from the combined array.
This is an extension of Median of two sorted arrays of equal size problem. Here we handle arrays of unequal size also.
Examples:
[Naive Approach] Using Sorting - O((n + m) × log (n + m)) Time and O(n + m) SpaceInput: a[] = [-5, 3, 6, 12, 15], b[] = [-12, -10, -6, -3, 4, 10]
Output: 3
Explanation: The merged array is [-12, -10, -6, -5 , -3, 3, 4, 6, 10, 12, 15]. So the median of the merged array is 3.Input: a[] = [1], b[] = [2, 4, 5, 6, 7]
Output: 4.5
Explanation: The merged array is [1, 2, 4, 5, 6, 7]. The total number of elements are even, so there are two middle elements. Take the average between the two: (4 + 5) / 2 = 4.5
The idea is to combines both sorted arrays into a new array and then sorts it. Once sorted, it finds the median by checking the total length. If the size is odd, it returns the middle element; if even, it returns the average of the two middle elements. This method is straightforward but not optimal in terms of time and space complexity.
Illustration:
C++a[] = [ -5, 3, 6, 12, 15 ], b[] = [ -12, -10, -6, -3, 4, 10 ]
- After concatenating them in a third array: c[] = [ -5, 3, 6, 12, 15, -12, -10, -6, -3, 4, 10]
- Sort c[] = [ -12, -10, -6, -5, -3, 3, 4, 6, 10, 12, 15 ]
- As the length of c[] is odd, so the median is the middle element = 3
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
double medianOf2(vector<int>& a, vector<int>& b) {
// merge both the arrays
vector<int> c(a.begin(), a.end());
c.insert(c.end(), b.begin(), b.end());
// sort the concatenated array
sort(c.begin(), c.end());
int len = c.size();
// if length of array is even
if (len % 2 == 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// if length of array is odd
else
return c[len / 2];
}
int main() {
vector<int> a = { -5, 3, 6, 12, 15 };
vector<int> b = { -12, -10, -6, -3, 4, 10 };
cout << medianOf2(a, b) << endl;
return 0;
}
C
#include <stdio.h>
// function to compare two integers for qsort
int compare(const void *a, const void *b) {
return (*(int*)a - *(int*)b);
}
double medianOf2(int a[], int n, int b[], int m) {
// calculate the total size of the concatenated array
int len = n + m;
int c[len];
// Concatenate a and b into c
for (int i = 0; i < n; ++i)
c[i] = a[i];
for (int i = 0; i < m; ++i)
c[n + i] = b[i];
// sort the concatenated array
qsort(c, len, sizeof(int), compare);
// calculate and return the median
int mid = len / 2;
// if length of array is even
if (len % 2 == 0)
return (c[mid] + c[mid - 1]) / 2.0;
// if length of array is odd
else
return c[mid];
}
int main() {
int a[] = { -5, 3, 6, 12, 15 };
int b[] = { -12, -10, -6, -3, 4, 10 };
int n = sizeof(a) / sizeof(a[0]);
int m = sizeof(b) / sizeof(b[0]);
printf("%f\n", medianOf2(a, n, b, m));
return 0;
}
Java
import java.util.Collections;
import java.util.Arrays;
class GfG {
static double medianOf2(int[] a, int[] b) {
// merge both the arrays
int[] c = new int[a.length + b.length];
System.arraycopy(a, 0, c, 0, a.length);
System.arraycopy(b, 0, c, a.length, b.length);
// sort the concatenated array
Arrays.sort(c);
int len = c.length;
// if length of array is even
if (len % 2 == 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// if length of array is odd
else
return c[len / 2];
}
public static void main(String[] args) {
int[] a = { -5, 3, 6, 12, 15 };
int[] b = { -12, -10, -6, -3, 4, 10 };
System.out.println(medianOf2(a, b));
}
}
Python
def medianOf2(a, b):
# merge both the arrays
c = a + b
# sort the concatenated array
c.sort()
len_c = len(c)
# if length of array is even
if len_c % 2 == 0:
return (c[len_c // 2] + c[len_c // 2 - 1]) / 2.0
# if length of array is odd
else:
return c[len_c // 2]
if __name__ == "__main__":
a = [-5, 3, 6, 12, 15]
b = [-12, -10, -6, -3, 4, 10]
print(medianOf2(a, b))
C#
using System;
using System.Linq;
class GfG {
static double MedianOf2(int[] a, int[] b) {
// merge both the arrays
int[] c = a.Concat(b).ToArray();
// sort the concatenated array
Array.Sort(c);
int len = c.Length;
// if length of array is even
if (len % 2 == 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// if length of array is odd
else
return c[len / 2];
}
static void Main() {
int[] a = { -5, 3, 6, 12, 15 };
int[] b = { -12, -10, -6, -3, 4, 10 };
Console.WriteLine(MedianOf2(a, b));
}
}
JavaScript
function medianOf2(a, b) {
// merge both the arrays
let c = [...a, ...b];
// sort the concatenated array
c.sort((x, y) => x - y);
let len = c.length;
// if length of array is even
if (len % 2 === 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// if length of array is odd
else
return c[Math.floor(len / 2)];
}
// Driver Code
let a = [-5, 3, 6, 12, 15];
let b = [-12, -10, -6, -3, 4, 10];
console.log(medianOf2(a, b));
[Better Approach] Use Merge of Merge Sort - O(m + n) Time and O(1) Space
The idea is to simulate the merging process of two sorted arrays without actually creating a new one. By iterating through both arrays together until reaching the middle index, the algorithm keeps track of the last two selected elements.
These are then used to compute the median: if the total number of elements is odd, the middle element is returned; if even, the average of the two middle elements is returned. This ensures correct handling for both even and odd combined lengths.
C++
#include <iostream>
#include <vector>
using namespace std;
double medianOf2(vector<int>& a, vector<int>& b) {
int n = a.size(), m = b.size();
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// loop till (m+n)/2
for (int count = 0; count <= (m + n)/2; count++){
m2 = m1;
// if both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// if only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// if only b[] has remaining elements
else
m1 = b[j++];
}
// return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
int main() {
vector<int> arr1 = { -5, 3, 6, 12, 15};
vector<int> arr2 = { -12, -10, -6, -3, 4, 10 };
cout << medianOf2(arr1, arr2) << endl;
return 0;
}
C
#include <stdio.h>
double medianOf2(int a[], int n, int b[], int m) {
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// loop till (m+n)/2
for (int count = 0; count <= (m + n)/2; count++){
m2 = m1;
// if both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// if only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// if only b[] has remaining elements
else
m1 = b[j++];
}
// return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
int main() {
int arr1[] = { -5, 3, 6, 12, 15 };
int arr2[] = { -12, -10, -6, -3, 4, 10 };
int n = sizeof(arr1) / sizeof(arr1[0]);
int m = sizeof(arr2) / sizeof(arr2[0]);
printf("%f\n", medianOf2(arr1, n, arr2, m));
return 0;
}
Java
import java.util.*;
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.length, m = b.length;
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// loop till (m + n)/2
for (int count = 0; count <= (m + n)/2; count++){
m2 = m1;
// if both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// if only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// if only b[] has remaining elements
else
m1 = b[j++];
}
// return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
public static void main(String[] args) {
int[] arr1 = { -5, 3, 6, 12, 15 };
int[] arr2 = { -12, -10, -6, -3, 4, 10 };
System.out.println(medianOf2(arr1, arr2));
}
}
Python
def medianOf2(a, b):
n = len(a)
m = len(b)
i = 0
j = 0
# m1 to store the middle element
# m2 to store the second middle element
m1 = -1
m2 = -1
# loop till (m+n)/2
for count in range((m + n) // 2 + 1):
m2 = m1
# if both the arrays have remaining elements
if i != n and j != m:
if a[i] > b[j]:
m1 = b[j]
j += 1
else:
m1 = a[i]
i += 1
# if only a[] has remaining elements
elif i < n:
m1 = a[i]
i += 1
# if only b[] has remaining elements
else:
m1 = b[j]
j += 1
# return median based on odd/even size
if (m + n) % 2 == 1:
return m1
else:
return (m1 + m2) / 2.0
if __name__ == "__main__":
arr1 = [-5, 3, 6, 12, 15]
arr2 = [-12, -10, -6, -3, 4, 10]
print(medianOf2(arr1, arr2))
C#
using System;
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.Length, m = b.Length;
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// loop till (m+n)/2
for (int count = 0; count <= (m + n)/2; count++){
m2 = m1;
// if both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// if only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// if only b[] has remaining elements
else
m1 = b[j++];
}
// return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
static void Main() {
int[] arr1 = { -5, 3, 6, 12, 15 };
int[] arr2 = { -12, -10, -6, -3, 4, 10 };
Console.WriteLine(medianOf2(arr1, arr2));
}
}
JavaScript
function medianOf2(a, b) {
let n = a.length, m = b.length;
let i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
let m1 = -1, m2 = -1;
// loop till (m+n)/2
for (let count = 0; count <= (m + n)/2; count++){
m2 = m1;
// if both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// if only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// if only b[] has remaining elements
else
m1 = b[j++];
}
// return median based on odd/even size
if ((m + n) % 2 === 1)
return m1;
else
return (m1 + m2) / 2.0;
}
// Driver code
let arr1 = [-5, 3, 6, 12, 15];
let arr2 = [-12, -10, -6, -3, 4, 10];
console.log(medianOf2(arr1, arr2));
[Expected Approach] Using Binary Search - O(log min(n, m)) Time and O(1) Space
Prerequisite: Median of two sorted arrays of same size
The approach is similar to the Binary Search approach of Median of two sorted arrays of same size with the only difference that here we apply binary search on the smaller array instead of a[].
Why do we apply Binary Search on the smaller array?
Applying Binary Search on the smaller array helps us in two ways:
To avoid handling such cases, we can simply binary search on the smaller array.
C++
#include <iostream>
#include <vector>
#include <limits.h>
using namespace std;
double medianOf2(vector<int> &a, vector<int> &b) {
int n = a.size(), m = b.size();
// if a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, a);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// find elements to the left and right of
// partition in a[]
int l1 = (mid1 == 0 ? INT_MIN : a[mid1 - 1]);
int r1 = (mid1 == n ? INT_MAX : a[mid1]);
// find elements to the left and right of
// partition in b[]
int l2 = (mid2 == 0 ? INT_MIN : b[mid2 - 1]);
int r2 = (mid2 == m ? INT_MAX : b[mid2]);
// if it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// if the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 == 0)
return (max(l1, l2) + min(r1, r2)) / 2.0;
// if the total elements are odd, then median is
// the middle element
else
return max(l1, l2);
}
// check if we need to take lesser elements from a[]
if (l1 > r2){
hi = mid1 - 1;
}
// check if we need to take more elements from a[]
else{
lo = mid1 + 1;
}
}
return 0;
}
int main() {
vector<int> a = { -5, 3, 6, 12, 15 };
vector<int> b = { -12, -10, -6, -3, 4, 10 };
cout << medianOf2(a, b);
return 0;
}
C
#include <stdio.h>
#include <limits.h>
double medianOf2(int a[], int n, int b[], int m) {
// if a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, m, a, n);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// find elements to the left and right of
// partition in a[]
int l1 = (mid1 == 0) ? INT_MIN : a[mid1 - 1];
int r1 = (mid1 == n) ? INT_MAX : a[mid1];
// find elements to the left and right of
// partition in b[]
int l2 = (mid2 == 0) ? INT_MIN : b[mid2 - 1];
int r2 = (mid2 == m) ? INT_MAX : b[mid2];
// if it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// if the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 == 0)
return (max(l1, l2) + min(r1, r2)) / 2.0;
// if the total elements are odd, then median is
// the middle element
else
return max(l1, l2);
}
// check if we need to take fewer
// elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// check if we need to take more
// elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
// Helper functions for max and min
int max(int a, int b) {
return a > b ? a : b;
}
int min(int a, int b) {
return a < b ? a : b;
}
int main() {
int a[] = {-5, 3, 6, 12, 15};
int b[] = {-12, -10, -6, -3, 4, 10};
int n = sizeof(a) / sizeof(a[0]);
int m = sizeof(b) / sizeof(b[0]);
printf("%f\n", medianOf2(a, n, b, m));
return 0;
}
Java
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.length, m = b.length;
// if a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, a);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// find elements to the left and right of
// partition in a[]
int l1 = (mid1 == 0) ?
Integer.MIN_VALUE : a[mid1 - 1];
int r1 = (mid1 == n) ?
Integer.MAX_VALUE : a[mid1];
// find elements to the left and right of
// partition in b[]
int l2 = (mid2 == 0) ?
Integer.MIN_VALUE : b[mid2 - 1];
int r2 = (mid2 == m) ?
Integer.MAX_VALUE : b[mid2];
// if it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// if the total elements are even, then median
// is the average of two middle elements
if ((n + m) % 2 == 0)
return (Math.max(l1, l2)+Math.min(r1, r2))/2.0;
// if the total elements are odd, then median
// is the middle element
else
return Math.max(l1, l2);
}
// check if we need to take fewer
// elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// check if we need to take more
// elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
public static void main(String[] args) {
int[] a = {-5, 3, 6, 12, 15};
int[] b = {-12, -10, -6, -3, 4, 10};
System.out.println(medianOf2(a, b));
}
}
Python
def medianOf2(a, b):
n = len(a)
m = len(b)
# if a[] has more elements, then call medianOf2
# with reversed parameters
if n > m:
return medianOf2(b, a)
lo = 0
hi = n
while lo <= hi:
mid1 = (lo + hi) // 2
mid2 = (n + m + 1) // 2 - mid1
# find elements to the left and right
# of partition in a[]
l1 = (mid1 == 0) and float('-inf') or a[mid1 - 1]
r1 = (mid1 == n) and float('inf') or a[mid1]
# find elements to the left and right
# of partition in b[]
l2 = (mid2 == 0) and float('-inf') or b[mid2 - 1]
r2 = (mid2 == m) and float('inf') or b[mid2]
# if it is a valid partition
if l1 <= r2 and l2 <= r1:
# if the total elements are even, then median is
# the average of two middle elements
if (n + m) % 2 == 0:
return (max(l1, l2) + min(r1, r2)) / 2.0
# if the total elements are odd, then median is
# the middle element
else:
return max(l1, l2)
# check if we need to take lesser
# elements from a[]
if l1 > r2:
hi = mid1 - 1
# check if we need to take more
# elements from a[]
else:
lo = mid1 + 1
return 0
if __name__ == "__main__":
a = [-5, 3, 6, 12, 15]
b = [-12, -10, -6, -3, 4, 10]
print(medianOf2(a, b))
C#
using System;
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.Length, m = b.Length;
// if a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, a);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// find elements to the left and right
// of partition in a[]
int l1 = (mid1 == 0 ? int.MinValue:a[mid1 - 1]);
int r1 = (mid1 == n ? int.MaxValue : a[mid1]);
// find elements to the left and right
// of partition in b[]
int l2 = (mid2 == 0 ? int.MinValue:b[mid2 - 1]);
int r2 = (mid2 == m ? int.MaxValue : b[mid2]);
// if it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// if the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 == 0)
return (Math.Max(l1, l2)+Math.Min(r1, r2))/2.0;
// if the total elements are odd, then median is
// the middle element
else
return Math.Max(l1, l2);
}
// check if we need to take lesser
// elements from arr1
if (l1 > r2)
hi = mid1 - 1;
// check if we need to take more
// elements from arr1
else
lo = mid1 + 1;
}
return 0;
}
static void Main() {
int[] a = { -5, 3, 6, 12, 15 };
int[] b = { -12, -10, -6, -3, 4, 10 };
Console.WriteLine(medianOf2(a, b));
}
}
JavaScript
function medianOf2(a, b) {
let n = a.length, m = b.length;
// If a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, a);
let lo = 0, hi = n;
while (lo <= hi) {
let mid1 = Math.floor((lo + hi) / 2);
let mid2 = Math.floor((n + m + 1) / 2) - mid1;
// Find elements to the left and right of
// partition in a[]
let l1 = (mid1 === 0) ? -Infinity:a[mid1 - 1];
let r1 = (mid1 === n) ? Infinity : a[mid1];
// Find elements to the left and right of
// partition in b[]
let l2 = (mid2 === 0) ? -Infinity:b[mid2 - 1];
let r2 = (mid2 === m) ? Infinity : b[mid2];
// if it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// if the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 === 0)
return (Math.max(l1, l2)+Math.min(r1, r2))/2.0;
// if the total elements are odd, then median is
// the middle element
else
return Math.max(l1, l2);
}
// check if we need to take lesser
// elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// check if we need to take more
// elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
// Driver Code
let a = [-5, 3, 6, 12, 15];
let b = [-12, -10, -6, -3, 4, 10];
console.log(medianOf2(a, b));
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4