A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/matplotlib-markers-module-in-python/ below:

Matplotlib Markers - GeeksforGeeks

Matplotlib Markers

Last Updated : 12 Jul, 2025

The markers module in Matplotlib helps highlight individual data points on plots, improving readability and aesthetics. With various marker styles, users can customize plots to distinguish data series and emphasize key points, enhancing the effectiveness of visualizations.

To illustrate this concept, consider the following simple example where we plot a line graph with circular markers:

Python
import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y, marker='o', linestyle='-', label='Data Points')
plt.title('Simple Plot with Markers')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend()
plt.show()

Output:

Simple Line plot with Markets

In this example, each point on the line is marked with a circle ('o'), making it easy to identify individual data points.

Matplotlib Markers Module in Python

The Matplotlib.markers module provides functions to handle markers in Matplotlib. Each marker has a specific character or symbol associated with it that represents how the data point will appear on the graph. This flexibility allows users to customize their plots according to their preferences or requirements

Below is the table defining most commonly used markers in Matplotlib:

Marker

Symbol

Description "."

point "o"

circle "v"

triangle_down "^"

triangle_up "s"

square "p"

pentagon "*"

star "8"

octagon

Let's mark each point by star symbol:

Python
import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y, marker='*', linestyle='--', color='r', label='Data Points')
plt.title('Modified Plot with Markers')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend()
plt.grid(True)
plt.show()

Output:

Simple plot with * marker Visualizing Multiple Marker Shapes

This code generates a plot showcasing different Matplotlib markers. It iterates through a list of marker styles and displays them on the same x-axis, with each marker positioned along a horizontal line at different y-values.

Python
import matplotlib.pyplot as plt

x = range(1, 11)
markers = ['o', 's', '^', 'v', 'D', '*', '+', 'x']

for i, marker in enumerate(markers):
    plt.plot(x, [i*2]*10, marker=marker, linestyle='')

plt.title('Different Matplotlib Markers')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()

Output:

Visualising Multiple markers Using fmt Parameter in Matplotlib

The syntax for using the fmt parameter in Matplotlib is actually a combination of marker, line style, and color, where the format string follows this structure:

Syntax: fmt = 'marker|line|color'

Let's have a look at the example:

Python
import matplotlib.pyplot as plt

x = [4,1,7,5,8]
plt.plot(x,'o-r')  # Red circles with a solid line

plt.title('Plot with fmt')
plt.xlabel('X-axis')

plt.show()

Output:

using fmt parameter Line and color reference

The line and color reference in Matplotlib allows you to customise the appearance of plot lines and markers. You can quickly set the line style and color to enhance visual clarity and aesthetics.

Line Style Reference

Line Style

Symbol

Solid line

'-'

Dashed line

'┈'

Dash-dot line

'-.'

Dotted line

':'

Long dashed line

'--'

Custom dash

'dotted'

Visualizing line style reference Python
import matplotlib.pyplot as plt

x = [1, 3, 2, 9, 8]
plt.plot(x,'--')  

plt.title('Line Style')
plt.xlabel('X-axis')
plt.show()

Output:

Line style reference Color Reference

Color

Symbol

Red

'r'

Green

'g'

Blue

'b'

Cyan

'c'

Magenta

'm'

Black

'k'

Yellow

'y'

Orange

'orange'

Purple

'purple'

White

'w'

Visualizing color style reference Python
import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y, 'ro')  

plt.title('Color Example')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()

Output:

Color Style Marker Size

You can use the keyword argument markersize or the shorter version, ms to set the size of the markers:

Visualizing markers with increased size Python
import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([4, 9, 1, 10])

plt.plot(ypoints,color="hotpink", marker = '*', ms = 20)
plt.show()

Output:

Marker size increased

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4