Last Updated : 02 Feb, 2022
There are so many pattern searching algorithms for the string. KMP algorithm, Z algorithm Rabin Karp algorithm, etc these algorithms are the optimization of Naive Pattern searching Algorithm.
Naive Pattern Searching Algorithm:
Input : "AABACACAACAC" Pattern : "CAC" Output : [4,9] AABACACAACAC
Implementation:
Java
// Java Program to Search for a Pattern String in the Input
// String returning the indices
// Importing input java classes
import java.io.*;
// Main class
public class GFG {
// Method 1
// To find pattern in the string
static void search(String s, String pattern)
{
// Iterating over the string in which to be searched
// for using the length() method
for (int i = 0; i <= s.length() - pattern.length();
++i) {
int check = 1;
// Iterating over the string for which is to be
// searched using the length() method
for (int j = 0; j < pattern.length(); ++j) {
// Now, checking the elements of pattern
// with the given string using the charAt()
// method
if (s.charAt(i + j) != pattern.charAt(j)) {
// Setting check to zero as pattern is
// not detected here
check = 0;
// Break statement to hault
// execution of code
break;
}
}
// Now if the check remains same as declared
// then pattern is detected at least once
if (check == 1) {
// Printing the position(index) of the
// pattern string in the input string
System.out.print(i + " , ");
}
}
}
// Method 2
// Main driver method
public static void main(String[] args)
{
// Given custom input string
String s = "AABACACAACAC";
// Pattern to be looked after in
// the above input string
String pattern = "CAC";
// Display message for interpreting the indices
// ai where if the pattern exists
System.out.print(
"Pattern is found at the indices : ");
// Calling the above search() method
// in the main() method
search(s, pattern);
}
}
Pattern is found at the indices : 4 , 9 ,
Output explanation:
The above algorithm for pattern searching is the basic algorithm the worst as the average time complexity of this algorithm is O(n×m) where n is the pattern and m is the given string.
How can we reduce the complexity of this algorithm?
It is possible with the help of rolling hash. Rabin Karp algorithm is one of the optimized algorithms of the naive algorithm that performs searching by rolling over the string and search the pattern.
Illustration:
Input: txt[] = "THIS IS A TEST TEXT" pat[] = "TEST" Output: Pattern found at index 10 Input: txt[] = "AABAACAADAABAABA" pat[] = "AABA" Output: Pattern found at index 0 Pattern found at index 9 Pattern found at index 12
Procedure:
Implementation:
Simple Rolling algorithm assuming the pattern of length 2
// Java Program to illustrating Simple Rolling Hashing
// Importing input output classes
import java.io.*;
// Main class
class GFG {
// Method 1
// To search the pattern
static void search(String S, String pattern)
{
// Declaring and initializing the hash values
int hash1 = 0;
int hash2 = 0;
// Iterating over the pattern string to be matched
// over
for (int i = 0; i < pattern.length(); ++i) {
// Storing the hash value of the pattern
hash1 += pattern.charAt(i) - 'A';
// Storing First hash value of the string
hash2 += S.charAt(i) - 'A';
}
// Initially declaring with zero
int j = 0;
// Iterating over the pattern string to checkout
// hash values
for (int i = 0; i <= S.length() - pattern.length();
++i) {
// Checking the hash value
if (hash2 == hash1) {
// Checking the value
for (j = 0; j < pattern.length(); ++j) {
// Checking for detection of pattern in a
// pattern
if (pattern.charAt(j)
!= S.charAt(i + j)) {
// Break statement to hault the
// execution of program as no
// pattern found
break;
}
}
}
// If execution is not stopped means
// pattern(sub-string) is present
// So now simply detecting for one or more
// occurrences inbetween pattern string using the
// length() method
if (j == pattern.length()) {
// Pattern is detected so printing the index
System.out.println(i);
}
// for last case of loop, have to check,
// otherwise,
// S.charAt(i + pattern.length()) below will
// throw error
if (i == S.length() - pattern.length())
break;
// Roll the hash value over the string detected
hash2 = (int)((hash2) - (S.charAt(i) - 'A'))
+ S.charAt(i + pattern.length()) - 'A';
}
}
// Method 2
// Main driver method
public static void main(String[] args)
{
// Input string to be traversed
String S = "AABAACAADAABAABA";
// Pattern string to be checked
String pattern = "AABA";
// Calling the above search() method(Method1)
// in the main() method
search(S, pattern);
}
}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4