Last Updated : 02 Aug, 2025
The functools module offers a collection of tools that simplify working with functions and callable objects. It includes utilities to modify, extend or optimize functions without rewriting their core logic, helping you write cleaner and more efficient code.
The partial class fix certain arguments of a function and create a new function with fewer parameters. This is especially useful for creating specialized versions of functions without defining new ones from scratch.
Syntax:
partial(func, /, *args, **keywords)
Parameter:
Example:
Python
from functools import partial
def power(a, b):
return a ** b
pow2 = partial(power, b=2)
pow4 = partial(power, b=4)
power_of_5 = partial(power, 5)
print(power(2, 3))
print(pow2(4))
print(pow4(3))
print(power_of_5(2))
print(pow2.func)
print(pow2.keywords)
print(power_of_5.args)
8 16 81 25 <function power at 0x7fb6fa23f100> {'b': 2} (5,)
Explanation:
Partialmethod works like partial, but for class methods. It allows you to fix some method arguments when defining methods inside classes without making a new method manually.
Syntax:
partialmethod(func, *args, **keywords)
Parameter:
Example:
Python
from functools import partialmethod
class Demo:
def __init__(self):
self.color = 'black'
def _color(self, type):
self.color = type
set_red = partialmethod(_color, type='red')
set_blue = partialmethod(_color, type='blue')
set_green = partialmethod(_color, type='green')
obj = Demo()
print(obj.color)
obj.set_blue()
print(obj.color)
Explanation:
Cmp_to_key converts a comparison function into a key function. The comparison function must return 1, -1 and 0 for different conditions. It can be used in key functions such as sorted(), min(), max().
Syntax:
cmp_to_key(func)
Parameter: func a function that compares two values and returns -1, 0, or 1.
Example:
Python
from functools import cmp_to_key
def cmp_fun(a, b):
if a[-1] > b[-1]:
return 1
elif a[-1] < b[-1]:
return -1
else:
return 0
l1 = ['geeks', 'for', 'geeks']
sorted_list = sorted(l1, key=cmp_to_key(cmp_fun))
print('Sorted list:', sorted_list)
Sorted list: ['for', 'geeks', 'geeks']
Explanation:
It applies a function of two arguments repeatedly on the elements of a sequence so as to reduce the sequence to a single value. For example, reduce(lambda x, y: x^y, [1, 2, 3, 4]) calculates (((1^2)^3)^4). If the initial is present, it is placed first in the calculation, and the default result is when the sequence is empty.
Syntax:
reduce(function, iterable[, initializer])
Parameter:
Example:
Python
from functools import reduce
l1 = [2, 4, 7, 9, 1, 3]
sum_of_list1 = reduce(lambda a, b:a + b, l1)
l2 = ["abc", "xyz", "def"]
max_of_list2 = reduce(lambda a, b:a if a>b else b, l2)
print('Sum of list1 :', sum_of_list1)
print('Maximum of list2 :', max_of_list2)
Sum of list1 : 26 Maximum of list2 : xyz
Explanation:
This class decorator automatically fills in missing comparison methods (__lt__, __gt__, etc.) based on the few you provide. It helps you write less code when implementing rich comparisons.
Syntax:
@total_ordering
Example:
Python
from functools import total_ordering
@total_ordering
class N:
def __init__(self, value):
self.value = value
def __eq__(self, other):
return self.value == other.value
def __lt__(self, other):
return self.value > other.value # Inverted for demo
print('6 > 2:', N(6) > N(2))
print('3 < 1:', N(3) < N(1))
print('2 <= 7:', N(2) <= N(7))
print('9 >= 10:', N(9) >= N(10))
print('5 == 5:', N(5) == N(5))
6 > 2: False 3 < 1: True 2 <= 7: False 9 >= 10: True 5 == 5: True
Explanation:
update_wrapper updates a wrapper function to copy attributes (__name__, __doc__, etc.) from the wrapped function. This improves debugging and introspection when wrapping functions.
Syntax:
update_wrapper(wrapper, wrapped, assigned, updated)
Parameter:
Example:
Python
from functools import update_wrapper, partial
def power(a, b):
'''a to the power b'''
return a ** b
pow2 = partial(power, b=2)
pow2.__doc__ = 'a to the power 2'
pow2.__name__ = 'pow2'
print('Before update:')
print('Doc:', pow2.__doc__)
print('Name:', pow2.__name__)
update_wrapper(pow2, power)
print('After update:')
print('Doc:', pow2.__doc__)
print('Name:', pow2.__name__)
Before update: Doc: a to the power 2 Name: pow2 After update: Doc: a to the power b Name: power
Explanation:
wraps is a decorator that applies update_wrapper automatically. It’s commonly used when writing decorators to preserve original function metadata.
Syntax:
@wraps(wrapped, assigned, updated)
Parameter:
Example:
Python
from functools import wraps
def decorator(f):
@wraps(f)
def decorated(*args, **kwargs):
"""Decorator's docstring"""
return f(*args, **kwargs)
print('Docstring:', decorated.__doc__)
return decorated
@decorator
def f(x):
"""f's Docstring"""
return x
print('Function name:', f.__name__)
print('Docstring:', f.__doc__)
Docstring: f's Docstring Function name: f Docstring: f's Docstring
Explanation:
lru_cache caches recent function results to speed up repeated calls with the same arguments, improving performance at the cost of memory.
Syntax:
@lru_cache(maxsize=128, typed=False)
Parameter:
Example:
Python
from functools import lru_cache
@lru_cache(maxsize=None)
def factorial(n):
if n <= 1:
return 1
return n * factorial(n-1)
print([factorial(n) for n in range(7)])
print(factorial.cache_info())
[1, 1, 2, 6, 24, 120, 720] CacheInfo(hits=5, misses=7, maxsize=None, currsize=7)
Explanation:
signedispatch turns a function into a generic function that dispatches calls to different implementations based on the type of the first argument.
Syntax:
@singledispatch
Example:
Python
from functools import singledispatch
@singledispatch
def fun(s):
print(s)
@fun.register(int)
def _(s):
print(s * 2)
fun('GeeksforGeeks')
fun(10)
Explanation:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4