Last Updated : 23 Jul, 2025
In the previous post, we discussed how Asymptotic analysis overcomes the problems of the naive way of analyzing algorithms. Now let us learn about What is Worst, Average, and Best cases of an algorithm:
1. Worst Case Analysis (Mostly used)Average Case : The average case analysis is not easy to do in most practical cases and it is rarely done. In the average case analysis, we need to consider every input, its frequency and time taken by it which may not be possible in many scenarios
Best Case : The Best Case analysis is considered bogus. Guaranteeing a lower bound on an algorithm doesn't provide any information as in the worst case, an algorithm may take years to run.
Worst Case: This is easier than average case and gives an upper bound which is useful information to analyze software products.
Interesting information about asymptotic notations:Examples with their complexity analysis: 1. Linear search algorithm: C++A) For some algorithms, all the cases (worst, best, average) are asymptotically the same. i.e., there are no worst and best cases.
- Example: Merge Sort does order of n log(n) operations in all cases.
B) Where as most of the other sorting algorithms have worst and best cases.
- Example 1: In the typical implementation of Quick Sort (where pivot is chosen as a corner element), the worst occurs when the input array is already sorted and the best occurs when the pivot elements always divide the array into two halves.
- Example 2: For insertion sort, the worst case occurs when the array is reverse sorted and the best case occurs when the array is sorted in the same order as output.
#include <iostream>
#include <vector>
using namespace std;
// Linearly search target in arr.
// If target is present, return the index;
// otherwise, return -1
int search(vector<int>& arr, int x) {
for (int i = 0; i < arr.size(); i++) {
if (arr[i] == x)
return i;
}
return -1;
}
int main() {
vector<int> arr = {1, 10, 30, 15};
int x = 30;
cout << search(arr, x);
return 0;
}
C
#include <stdio.h>
#include <stdbool.h>
// Linearly search target in arr.
// If target is present, return the index;
// otherwise, return -1
int search(int arr[], int size, int x) {
for (int i = 0; i < size; i++) {
if (arr[i] == x)
return i;
}
return -1;
}
int main() {
int arr[] = {1, 10, 30, 15};
int size = sizeof(arr) / sizeof(arr[0]);
int x = 30;
printf("%d", search(arr, size, x));
return 0;
}
Java
import java.util.Arrays;
// Linearly search target in arr.
// If target is present, return the index;
// otherwise, return -1
public class GfG {
public static int search(int[] arr, int x) {
for (int i = 0; i < arr.length; i++) {
if (arr[i] == x)
return i;
}
return -1;
}
public static void main(String[] args) {
int[] arr = {1, 10, 30, 15};
int x = 30;
System.out.println(search(arr, x));
}
}
Python
# Linearly search target in arr.
# If target is present, return the index;
# otherwise, return -1
def search(arr, x):
for i in range(len(arr)):
if arr[i] == x:
return i
return -1
if __name__ == '__main__':
arr = [1, 10, 30, 15]
x = 30
print(search(arr, x))
C#
using System;
public class Program {
// Linearly search target in arr.
// If target is present, return the index;
// otherwise, return -1
public static int Search(int[] arr, int target) {
for (int i = 0; i < arr.Length; i++) {
if (arr[i] == target)
return i;
}
return -1;
}
public static void Main() {
int[] arr = {1, 10, 30, 15};
int target = 30;
Console.WriteLine(Search(arr, target));
}
}
JavaScript
// Linearly search target in arr.
// If target is present, return the index;
// otherwise, return -1
function search(arr, x) {
for (let i = 0; i < arr.length; i++) {
if (arr[i] === x)
return i;
}
return -1;
}
const arr = [1, 10, 30, 15];
const x = 30;
console.log(search(arr, x));
Best Case: Constant Time irrespective of input size. This will take place if the element to be searched is on the first index of the given list. So, the number of comparisons, in this case, is 1.
Average Case: Linear Time, This will take place if the element to be searched is at the middle index (in an average search) of the given list.
Worst Case: The element to be searched is not present in the list
2. Special Array Sum : In this example, we will take an array of length (n) and deals with the following cases :
Below is the implementation of the given problem:
C++
#include <iostream>
#include <vector>
using namespace std;
int getSum(const vector<int>& arr1) {
int n = arr1.size();
if (n % 2 == 0) // (n) is even
return 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += arr1[i];
}
return sum; // (n) is odd
}
int main() {
// Declaring two vectors, one with an odd length
// and the other with an even length
vector<int> arr1 = {1, 2, 3, 4};
vector<int> arr2 = {1, 2, 3, 4, 5};
cout << getSum(arr1) << endl;
cout << getSum(arr2) << endl;
return 0;
}
C
#include <stdio.h>
#include <stdlib.h>
int getSum(const int* arr1, int n) {
if (n % 2 == 0) // (n) is even
return 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += arr1[i];
}
return sum; // (n) is odd
}
int main() {
// Declaring two arrays, one with an odd length
// and the other with an even length
int arr1[] = {1, 2, 3, 4};
int arr2[] = {1, 2, 3, 4, 5};
printf("%d\n", getSum(arr1, 4));
printf("%d\n", getSum(arr2, 5));
return 0;
}
Java
import java.util.Arrays;
public class Main {
public static int getSum(int[] arr1) {
int n = arr1.length;
if (n % 2 == 0) // (n) is even
return 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += arr1[i];
}
return sum; // (n) is odd
}
public static void main(String[] args) {
// Declaring two arrays, one with an odd length
// and the other with an even length
int[] arr1 = {1, 2, 3, 4};
int[] arr2 = {1, 2, 3, 4, 5};
System.out.println(getSum(arr1));
System.out.println(getSum(arr2));
}
}
Python
def getSum(arr1):
n = len(arr1)
if n % 2 == 0: # (n) is even
return 0
sum = 0
for i in range(n):
sum += arr1[i]
return sum # (n) is odd
if __name__ == '__main__':
# Declaring two lists, one with an odd length
# and the other with an even length
arr1 = [1, 2, 3, 4]
arr2 = [1, 2, 3, 4, 5]
print(getSum(arr1))
print(getSum(arr2))
C#
using System;
class Program {
static int getSum(int[] arr1) {
int n = arr1.Length;
if (n % 2 == 0) // (n) is even
return 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += arr1[i];
}
return sum; // (n) is odd
}
static void Main() {
// Declaring two arrays, one with an odd length
// and the other with an even length
int[] arr1 = {1, 2, 3, 4};
int[] arr2 = {1, 2, 3, 4, 5};
Console.WriteLine(getSum(arr1));
Console.WriteLine(getSum(arr2));
}
}
JavaScript
function getSum(arr1) {
const n = arr1.length;
if (n % 2 === 0) // (n) is even
return 0;
let sum = 0;
for (let i = 0; i < n; i++) {
sum += arr1[i];
}
return sum; // (n) is odd
}
// Declaring two arrays, one with an odd length
// and the other with an even length
const arr1 = [1, 2, 3, 4];
const arr2 = [1, 2, 3, 4, 5];
console.log(getSum(arr1));
console.log(getSum(arr2));
PHP
<?php
function getSum($arr1) {
$n = count($arr1);
if ($n % 2 == 0) // (n) is even
return 0;
$sum = 0;
for ($i = 0; $i < $n; $i++) {
$sum += $arr1[$i];
}
return $sum; // (n) is odd
}
// Declaring two arrays, one with an odd length
// and the other with an even length
$arr1 = [1, 2, 3, 4];
$arr2 = [1, 2, 3, 4, 5];
echo getSum($arr1) . "\n";
echo getSum($arr2) . "\n";
?>
Time Complexity Analysis:
Analysis of Algorithms | Set 2 (Worst, Average and Best Cases)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4