Last Updated : 23 Jul, 2025
Try it on GfG Practice
Postorder traversal is a tree traversal method that follows the Left-Right-Root order:
Algorithm:Input:
Output: 2 3 1
Explanation: Postorder Traversal visits the nodes in the following order: Left, Right, Root. Therefore, we visit the left node 2, then the right node 3 and lastly the root node 1.Input:
Output: 4 5 2 6 3 1
Explanation: Postorder Traversal (Left → Right → Root). Visit 4 → 5 → 2 → 6 → 3 → 1 , resulting in 4 5 2 6 3 1.
C++
- If root is NULL then return
- Recursively traverse the left subtree.
- Recursively traverse the right subtree.
- Process the root node (e.g., print its value).
#include <bits/stdc++.h>
using namespace std;
// Structure of a Binary Tree Node
struct Node {
int data;
struct Node *left, *right;
Node(int v)
{
data = v;
left = right = nullptr;
}
};
// Function to print postorder traversal
void printPostorder(struct Node* node)
{
if (node == nullptr)
return;
// First recur on left subtree
printPostorder(node->left);
// Then recur on right subtree
printPostorder(node->right);
// Now deal with the node
cout << node->data << " ";
}
int main()
{
struct Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->right = new Node(6);
printPostorder(root);
return 0;
}
C
#include <stdio.h>
#include <stdlib.h>
// Structure of a Binary Tree Node
struct Node {
int data;
struct Node *left, *right;
};
// Function to print postorder traversal
void printPostorder(struct Node* node)
{
if (node == NULL)
return;
// First recur on left subtree
printPostorder(node->left);
// Then recur on right subtree
printPostorder(node->right);
// Now deal with the node
printf("%d ", node->data);
}
int main()
{
struct Node* root = (struct Node*)malloc(sizeof(struct Node));
root->data = 1;
root->left = (struct Node*)malloc(sizeof(struct Node));
root->left->data = 2;
root->right = (struct Node*)malloc(sizeof(struct Node));
root->right->data = 3;
root->left->left = (struct Node*)malloc(sizeof(struct Node));
root->left->left->data = 4;
root->left->right = (struct Node*)malloc(sizeof(struct Node));
root->left->right->data = 5;
root->right->right = (struct Node*)malloc(sizeof(struct Node));
root->right->right->data = 6;
printPostorder(root);
return 0;
}
Java
class Node {
int data;
Node left, right;
Node(int v) {
data = v;
left = right = null;
}
}
public class GfG{
// Function to print postorder traversal
void printPostorder(Node node) {
if (node == null)
return;
// First recur on left subtree
printPostorder(node.left);
// Then recur on right subtree
printPostorder(node.right);
// Now deal with the node
System.out.print(node.data + " ");
}
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
GfG tree = new GfG();
tree.printPostorder(root);
}
}
Python
class Node:
def __init__(self, v):
self.data = v
self.left = None
self.right = None
# Function to print postorder traversal
def print_postorder(node):
if node is None:
return
# First recur on left subtree
print_postorder(node.left)
# Then recur on right subtree
print_postorder(node.right)
# Now deal with the node
print(node.data, end=' ')
if __name__ == '__main__':
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(6)
print_postorder(root)
C#
using System;
// Structure of a Binary Tree Node
public class Node {
public int data;
public Node left, right;
public Node(int v)
{
data = v;
left = right = null;
}
}
public class GfG {
// Function to print postorder traversal
static void printPostorder(Node node)
{
if (node == null)
return;
// First recur on left subtree
printPostorder(node.left);
// Then recur on right subtree
printPostorder(node.right);
// Now deal with the node
Console.Write(node.data + " ");
}
static public void Main()
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
printPostorder(root);
}
}
JavaScript
// Structure of a Binary Tree Node
class Node {
constructor(v) {
this.data = v;
this.left = null;
this.right = null;
}
}
// Function to print postorder traversal
function printPostorder(node) {
if (node == null) {
return;
}
// First recur on left subtree
printPostorder(node.left);
// Then recur on right subtree
printPostorder(node.right);
// Now deal with the node
console.log(node.data + " ");
}
// Driver code
function main() {
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
printPostorder(root);
}
main();
Time Complexity: O(n)
Auxiliary Space: O(h), h is the height of the tree
Related articles:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4