A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/dsa/open-addressing-collision-handling-technique-in-hashing/ below:

Open Addressing Collision Handling technique in Hashing

Open Addressing Collision Handling technique in Hashing

Last Updated : 23 Jul, 2025

Open Addressing is a method for handling collisions. In Open Addressing, all elements are stored in the hash table itself. So at any point, the size of the table must be greater than or equal to the total number of keys (Note that we can increase table size by copying old data if needed). This approach is also known as closed hashing. This entire procedure is based upon probing. We will understand the types of probing ahead:

Different ways of Open Addressing: 1. Linear Probing: 

In linear probing, the hash table is searched sequentially that starts from the original location of the hash. If in case the location that we get is already occupied, then we check for the next location. 

The function used for rehashing is as follows: rehash(key) = (n+1)%table-size. 

For example, The typical gap between two probes is 1 as seen in the example below:

Let hash(x) be the slot index computed using a hash function and S be the table size 

If slot hash(x) % S is full, then we try (hash(x) + 1) % S
If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S
If (hash(x) + 2) % S is also full, then we try (hash(x) + 3) % S 

Example: Let us consider a simple hash function as “key mod 5” and a sequence of keys that are to be inserted are 50, 70, 76, 85, 93. 


Implementation : Please refer Program to implement Hash Table using Open Addressing

2. Quadratic Probing 

If you observe carefully, then you will understand that the interval between probes will increase proportionally to the hash value. Quadratic probing is a method with the help of which we can solve the problem of clustering that was discussed above.  This method is also known as the mid-square method. In this method, we look for the i2'th slot in the ith iteration. We always start from the original hash location. If only the location is occupied then we check the other slots.

let hash(x) be the slot index computed using hash function.  

If slot hash(x) % S is full, then we try (hash(x) + 1*1) % S
If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) % S
If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) % S

Example: Let us consider table Size = 7, hash function as Hash(x) = x % 7 and collision resolution strategy to be f(i) = i2 . Insert = 22, 30, and 50.

Implementation : Please refer Program for Quadratic Probing in Hashing

3. Double Hashing 

The intervals that lie between probes are computed by another hash function. Double hashing is a technique that reduces clustering in an optimized way. In this technique, the increments for the probing sequence are computed by using another hash function. We use another hash function hash2(x) and look for the i*hash2(x) slot in the ith rotation. 

let hash(x) be the slot index computed using hash function.  

If slot hash(x) % S is full, then we try (hash(x) + 1*hash2(x)) % S
If (hash(x) + 1*hash2(x)) % S is also full, then we try (hash(x) + 2*hash2(x)) % S
If (hash(x) + 2*hash2(x)) % S is also full, then we try (hash(x) + 3*hash2(x)) % S

Example: Insert the keys 27, 43, 692, 72 into the Hash Table of size 7. where first hash-function is h1​(k) = k mod 7 and second hash-function is h2(k) = 1 + (k mod 5)

Comparison of the above three: 

Open addressing is a collision handling technique used in hashing where, when a collision occurs (i.e., when two or more keys map to the same slot), the algorithm looks for another empty slot in the hash table to store the collided key.

The choice of collision handling technique can have a significant impact on the performance of a hash table. Linear probing is simple and fast, but it can lead to clustering (i.e., a situation where keys are stored in long contiguous runs) and can degrade performance. Quadratic probing is more spaced out, but it can also lead to clustering and can result in a situation where some slots are never checked. Double hashing is more complex, but it can lead to more even distribution of keys and can provide better performance in some cases.

S.No. Separate Chaining Open Addressing 1. Chaining is Simpler to implement. Open Addressing requires more computation. 2. In chaining, Hash table never fills up, we can always add more elements to chain. In open addressing, table may become full. 3. Chaining is Less sensitive to the hash function or load factors. Open addressing requires extra care to avoid clustering and load factor. 4. Chaining is mostly used when it is unknown how many and how frequently keys may be inserted or deleted. Open addressing is used when the frequency and number of keys is known. 5. Cache performance of chaining is not good as keys are stored using linked list. Open addressing provides better cache performance as everything is stored in the same table. 6. Wastage of Space (Some Parts of hash table in chaining are never used). In Open addressing, a slot can be used even if an input doesn't map to it. 7. Chaining uses extra space for links. No links in Open addressing

Note: Cache performance of chaining is not good because when we traverse a Linked List, we are basically jumping from one node to another, all across the computer's memory. For this reason, the CPU cannot cache the nodes which aren't visited yet, this doesn't help us. But with Open Addressing, data isn't spread, so if the CPU detects that a segment of memory is constantly being accessed, it gets cached for quick access.

Performance of Open Addressing: 

Like Chaining, the performance of hashing can be evaluated under the assumption that each key is equally likely to be hashed to any slot of the table (simple uniform hashing) 

m = Number of slots in the hash table

n = Number of keys to be inserted in the hash table

 Load factor α = n/m  ( < 1 )

Expected time to search/insert/delete < 1/(1 - α) 

So Search, Insert and Delete take (1/(1 - α)) time

Related Articles:
Hashing | Set 1 (Introduction)
Hashing | Set 2 (Separate Chaining) 


Hashing | Set 3 (Open Addressing)


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4