Last Updated : 23 Jul, 2025
Try it on GfG Practice
Inorder traversal is a depth-first traversal method that follows this sequence:
Algorithm :Input:
Output: 2 1 3
Explanation: The Inorder Traversal visits the nodes in the following order: Left, Root, Right. Therefore, we visit the left node 2, then the root node 1 and lastly the right node 3.Input :
Output: 4 2 5 1 3 6
Explanation: Inorder Traversal (Left → Root → Right). Visit 4 → 2 → 5 → 1 → 3 → 6 , resulting in 4 2 5 1 3 6.
C++
- If the root is NULL, return.
- Recursively traverse the left subtree.
- Process the root node (e.g., print its value).
- Recursively traverse the right subtree.
#include <bits/stdc++.h>
using namespace std;
// Structure of a Binary Tree Node
struct Node {
int data;
struct Node *left, *right;
Node(int v)
{
data = v;
left = right = nullptr;
}
};
// Function to print inorder traversal
void printInorder(struct Node* node)
{
if (node == nullptr)
return;
// First recur on left subtree
printInorder(node->left);
// Now deal with the node
cout << node->data << " ";
// Then recur on right subtree
printInorder(node->right);
}
int main()
{
struct Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->right = new Node(6);
printInorder(root);
return 0;
}
C
#include <stdio.h>
#include <stdlib.h>
// Structure of a Binary Tree Node
struct Node {
int data;
struct Node *left, *right;
};
// Function to print inorder traversal
void printInorder(struct Node* node) {
if (node == NULL)
return;
// First recur on left subtree
printInorder(node->left);
// Now deal with the node
printf("%d ", node->data);
// Then recur on right subtree
printInorder(node->right);
}
// Function to create a new node
struct Node* newNode(int v) {
struct Node* node =
(struct Node*)malloc(sizeof(struct Node));
node->data = v;
node->left = node->right = NULL;
return node;
}
int main() {
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(6);
printInorder(root);
return 0;
}
Java
import java.util.*;
// Structure of a Binary Tree Node
class Node {
int data;
Node left, right;
Node(int v)
{
data = v;
left = right = null;
}
}
class GfG {
// Function to print inorder traversal
public static void printInorder(Node node)
{
if (node == null)
return;
// First recur on left subtree
printInorder(node.left);
// Now deal with the node
System.out.print(node.data + " ");
// Then recur on right subtree
printInorder(node.right);
}
public static void main(String[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
printInorder(root);
}
}
Python
class Node:
def __init__(self, v):
self.data = v
self.left = None
self.right = None
# Function to print inorder traversal
def printInorder(node):
if node is None:
return
# First recur on left subtree
printInorder(node.left)
# Now deal with the node
print(node.data, end=' ')
# Then recur on right subtree
printInorder(node.right)
if __name__ == '__main__':
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(6)
printInorder(root)
C#
using System;
// Structure of a Binary Tree Node
public class Node {
public int data;
public Node left, right;
public Node(int v)
{
data = v;
left = right = null;
}
}
public class BinaryTree {
// Function to print inorder traversal
public static void printInorder(Node node)
{
if (node == null)
return;
// First recur on left subtree
printInorder(node.left);
// Now deal with the node
Console.Write(node.data + " ");
// Then recur on right subtree
printInorder(node.right);
}
public static void Main()
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
printInorder(root);
}
}
JavaScript
// Structure of a Binary Tree Node
class Node {
constructor(v) {
this.data = v;
this.left = null;
this.right = null;
}
}
// Function to print inorder traversal
function printInorder(node) {
if (node === null) {
return;
}
// First recur on left subtree
printInorder(node.left);
// Now deal with the node
console.log(node.data);
// Then recur on right subtree
printInorder(node.right);
}
const root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
printInorder(root);
Time Complexity: O(n), n is the total number of nodes
Auxiliary Space: O(h), h is the height of the tree.
In the worst case, h can be the same as N (when the tree is a skewed tree)
In the best case, h can be the same as log N (when the tree is a complete tree)
Related Articles:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4