Last Updated : 11 Jul, 2025
In-place has more than one definition. One strict definition is.
An in-place algorithm is an algorithm that does not need an extra space and produces an output in the same memory that contains the data by transforming the input 'in-place'. However, a small constant extra space used for variables is allowed.
A more broad definition is,
In-place means that the algorithm does not use extra space for manipulating the input but may require a small though non-constant extra space for its operation. Usually, this space is O(log n), though sometimes anything in O(n) (Smaller than linear) is allowed.
A Not In-Place Implementation of reversing an array
Implementation:
C++
// An Not in-place C++ program to reverse an array
#include <bits/stdc++.h>
using namespace std;
/* Function to reverse arr[] from start to end*/
void reverseArray(int arr[], int n)
{
// Create a copy array and store reversed
// elements
int rev[n];
for (int i=0; i<n; i++)
rev[n-i-1] = arr[i];
// Now copy reversed elements back to arr[]
for (int i=0; i<n; i++)
arr[i] = rev[i];
}
/* Utility function to print an array */
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
cout << arr[i] << " ";
cout << endl;
}
/* Driver function to test above functions */
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6};
int n = sizeof(arr)/sizeof(arr[0]);
printArray(arr, n);
reverseArray(arr, n);
cout << "Reversed array is" << endl;
printArray(arr, n);
return 0;
}
Java
// An Not in-place Java program
// to reverse an array
import java.util.*;
class GFG
{
/* Function to reverse arr[]
from start to end*/
public static void reverseArray(int []arr,
int n)
{
// Create a copy array
// and store reversed
// elements
int []rev = new int[n];
for (int i = 0; i < n; i++)
rev[n - i - 1] = arr[i];
// Now copy reversed
// elements back to arr[]
for (int i = 0; i < n; i++)
arr[i] = rev[i];
}
/* Utility function to
print an array */
public static void printArray(int []arr,
int size)
{
for (int i = 0; i < size; i++)
System.out.print(arr[i] + " ");
System.out.println("");
}
// Driver code
public static void main(String[] args)
{
int arr[] = {1, 2, 3, 4, 5, 6};
int n = arr.length;
printArray(arr, n);
reverseArray(arr, n);
System.out.println("Reversed array is");
printArray(arr, n);
}
}
// This code is contributed
// by Harshit Saini
Python3
# An Not in-place Python program
# to reverse an array
''' Function to reverse arr[]
from start to end '''
def reverseArray(arr, n):
# Create a copy array
# and store reversed
# elements
rev = n * [0]
for i in range(0, n):
rev[n - i - 1] = arr[i]
# Now copy reversed
# elements back to arr[]
for i in range(0, n):
arr[i] = rev[i]
# Driver code
if __name__ == "__main__":
arr = [1, 2, 3, 4, 5, 6]
n = len(arr)
print(*arr)
reverseArray(arr, n);
print("Reversed array is")
print(*arr)
# This code is contributed
# by Harshit Saini
C#
// An Not in-place C# program
// to reverse an array
using System;
class GFG
{
/* Function to reverse arr[]
from start to end*/
public static void reverseArray(int[] arr,
int n)
{
// Create a copy array
// and store reversed
// elements
int[] rev = new int[n];
for (int i = 0; i < n; i++)
rev[n - i - 1] = arr[i];
// Now copy reversed
// elements back to arr[]
for (int i = 0; i < n; i++)
arr[i] = rev[i];
}
/* Utility function to
print an array */
public static void printArray(int[] arr,
int size)
{
for (int i = 0; i < size; i++)
Console.Write(arr[i] + " ");
Console.Write("\n");
}
// Driver code
public static void Main()
{
int[] arr = {1, 2, 3, 4, 5, 6};
int n = arr.Length;
printArray(arr, n);
reverseArray(arr, n);
Console.WriteLine("Reversed array is");
printArray(arr, n);
}
}
// This code is contributed by Ita_c.
JavaScript
<script>
// An Not in-place Javascript program
// to reverse an array
/* Function to reverse arr[]
from start to end*/
function reverseArray(arr,n)
{
// Create a copy array
// and store reversed
// elements
let rev = new Array(n);
for (let i = 0; i < n; i++)
rev[n - i - 1] = arr[i];
// Now copy reversed
// elements back to arr[]
for (let i = 0; i < n; i++)
arr[i] = rev[i];
}
/* Utility function to
print an array */
function printArray(arr,size)
{
for (let i = 0; i < size; i++)
document.write(arr[i] + " ");
document.write("<br>");
}
// Driver code
let arr=[1, 2, 3, 4, 5, 6];
let n = arr.length;
printArray(arr, n);
reverseArray(arr, n);
document.write("Reversed array is<br>");
printArray(arr, n);
// This code is contributed by rag2127
</script>
1 2 3 4 5 6 Reversed array is 6 5 4 3 2 1
Time Complexity: O(n)
This needs O(n) extra space and is an example of a not-in-place algorithm.
An In-Place Implementation of Reversing an array.
Implementation:
C++
// An in-place C++ program to reverse an array
#include <bits/stdc++.h>
using namespace std;
/* Function to reverse arr[] from start to end*/
void reverseArray(int arr[], int n)
{
for (int i=0; i<n/2; i++)
swap(arr[i], arr[n-i-1]);
}
/* Utility function to print an array */
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
cout << arr[i] << " ";
cout << endl;
}
/* Driver function to test above functions */
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6};
int n = sizeof(arr)/sizeof(arr[0]);
printArray(arr, n);
reverseArray(arr, n);
cout << "Reversed array is" << endl;
printArray(arr, n);
return 0;
}
Java
// An in-place Java program
// to reverse an array
import java.util.*;
class GFG
{
public static int __(int x, int y) {return x;}
/* Function to reverse arr[]
from start to end*/
public static void reverseArray(int []arr,
int n)
{
for (int i = 0; i < n / 2; i++)
arr[i] = __(arr[n - i - 1],
arr[n - i - 1] = arr[i]);
}
/* Utility function to
print an array */
public static void printArray(int []arr,
int size)
{
for (int i = 0; i < size; i++)
System.out.print(Integer.toString(arr[i]) + " ");
System.out.println("");
}
// Driver code
public static void main(String[] args)
{
int []arr = new int[]{1, 2, 3, 4, 5, 6};
int n = arr.length;
printArray(arr, n);
reverseArray(arr, n);
System.out.println("Reversed array is");
printArray(arr, n);
}
}
// This code is contributed
// by Harshit Saini
Python3
# An in-place Python program
# to reverse an array
''' Function to reverse arr[]
from start to end'''
def reverseArray(arr, n):
for i in range(0, int(n / 2)):
arr[i], arr[n - i - 1] = arr[n - i - 1], arr[i]
# Driver code
if __name__ == "__main__":
arr = [1, 2, 3, 4, 5, 6]
n = len(arr)
print(*arr)
reverseArray(arr, n)
print("Reversed array is")
print(*arr)
# This code is contributed
# by Harshit Saini
C#
// An in-place C# program
// to reverse an array
using System;
class GFG
{
public static int __(int x, int y) {return x;}
/* Function to reverse arr[]
from start to end*/
public static void reverseArray(int []arr,
int n)
{
for (int i = 0; i < n / 2; i++)
arr[i] = __(arr[n - i - 1],
arr[n - i - 1] = arr[i]);
}
/* Utility function to
print an array */
public static void printArray(int []arr,
int size)
{
for (int i = 0; i < size; i++)
Console.Write(arr[i] + " ");
Console.WriteLine("");
}
// Driver code
public static void Main(String[] args)
{
int []arr = new int[]{1, 2, 3, 4, 5, 6};
int n = arr.Length;
printArray(arr, n);
reverseArray(arr, n);
Console.WriteLine("Reversed array is");
printArray(arr, n);
}
}
/* This code is contributed by PrinciRaj1992 */
JavaScript
<script>
// An in-place Javascript program
// to reverse an array
function __(x,y)
{
return x;
}
/* Function to reverse arr[]
from start to end*/
function reverseArray(arr,n)
{
for (let i = 0; i < n / 2; i++)
arr[i] = __(arr[n - i - 1],
arr[n - i - 1] = arr[i]);
}
/* Utility function to
print an array */
function printArray(arr,size)
{
for (let i = 0; i < size; i++)
document.write(arr[i] + " ");
document.write("<br>");
}
// Driver code
let arr=[1, 2, 3, 4, 5, 6];
let n = arr.length;
printArray(arr, n);
reverseArray(arr, n);
document.write("Reversed array is<br>");
printArray(arr, n);
// This code is contributed by avanitrachhadiya2155
</script>
1 2 3 4 5 6 Reversed array is 6 5 4 3 2 1
Time Complexity: O(n)
This needs O(1) extra space for exchanging elements and is an example of an in-place algorithm.
Which Sorting Algorithms are In-Place and which are not?
In Place: Bubble sort, Selection Sort, Insertion Sort, Heapsort.
Not In-Place: Merge Sort. Note that merge sort requires O(n) extra space.
What about QuickSort? Why is it called In-Place?
QuickSort uses extra space for recursive function calls. It is called in-place according to broad definition as extra space required is not used to manipulate input, but only for recursive calls.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4