Last Updated : 03 Apr, 2024
Creating NumPy arrays is a fundamental aspect of working with numerical data in Python. NumPy provides various methods to create arrays efficiently, catering to different needs and scenarios. In this article, we will see how we can create NumPy arrays using different ways and methods.
Below are some of the ways by which we can create NumPy Arrays in Python:
Create Numpy Arrays Using Lists or TuplesThe simplest way to create a NumPy array is by passing a Python list or tuple to the numpy.array() function. This method creates a one-dimensional array.
Python3
import numpy as np
my_list = [1, 2, 3, 4, 5]
numpy_array = np.array(my_list)
print("Simple NumPy Array:",numpy_array)
Initialize a Python NumPy Array Using Special Functions
NumPy provides several built-in functions to generate arrays with specific properties.
import numpy as np
zeros_array = np.zeros((2, 3))
ones_array = np.ones((3, 3))
constant_array = np.full((2, 2), 7)
range_array = np.arange(0, 10, 2) # start, stop, step
linspace_array = np.linspace(0, 1, 5) # start, stop, num
print("Zero Array:","\n",zeros_array)
print("Ones Array:","\n",ones_array)
print("Constant Array:","\n",constant_array)
print("Range Array:","\n",range_array)
print("Linspace Array:","\n",linspace_array)
Zero Array [[0. 0. 0.] [0. 0. 0.]] Zero Array [[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]] Constant Array [[7 7] [7 7]] Range Array [0 2 4 6 8] Linspace Array [0. 0.25 0.5 0.75 1. ]Create Python Numpy Arrays Using Random Number Generation
NumPy provides functions to create arrays filled with random numbers.
import numpy as np
random_array = np.random.rand(2, 3)
normal_array = np.random.randn(2, 2)
randint_array = np.random.randint(1, 10, size=(2, 3))
print(random_array)
print(normal_array)
print(randint_array)
[[0.87948864 0.55022063 0.29237533] [0.99475413 0.76666244 0.55240304]] [[ 1.77971899 0.67837749] [ 0.33101208 -1.04029635]] [[6 6 3] [8 5 8]]Create Python Numpy Arrays Using Matrix Creation Routines
NumPy provides functions to create specific types of matrices.
import numpy as np
identity_matrix = np.eye(3)
diagonal_array = np.diag([1, 2, 3])
zeros_like_array = np.zeros_like(diagonal_array)
ones_like_array = np.ones_like(diagonal_array)
print(identity_matrix)
print(diagonal_array)
print(zeros_like_array)
print(ones_like_array)
[[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] [[1 0 0] [0 2 0] [0 0 3]] [[0 0 0] [0 0 0] [0 0 0]] [[1 1 1] [1 1 1] [1 1 1]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4