Last Updated : 24 Jul, 2025
Data Visualization is the presentation of data in pictorial format. It is extremely important for Data Analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Seaborn is one of those packages that can make analyzing data much easier.
Data visualization with Seaborn PairplotIn this article, we will use Pairplot Seaborn to analyze data and, using the sns.pairplot() function.
Pairplot in Seaborn is a data visualization tool that creates a matrix of scatterplots, showing pairwise relationships between variables in a dataset, aiding in visualizing correlations and distributions.
PairPlot Seaborn: ImplementationTo plot multiple pairwise bivariate distributions in a dataset, you can use the pairplot() function. This shows the relationship for (n, 2) combination of variable in a DataFrame as a matrix of plots and the diagonal plots are the univariate plots.
Syntax:
seaborn.pairplot( data, \*\*kwargs )
Parameter:
First of all, We see Upload seaborn librarry 'tips' using pandas. Then, we will visualize data with seaborn.
Python
# importing packages
import seaborn
import matplotlib.pyplot as plt
# loading dataset using seaborn
df = seaborn.load_dataset('tips')
df.head()
Output:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
Let's plot pairplot using seaborn:
We will simply plot a pairplot with tips data frame.
Python
seaborn.pairplot(df)
plt.show()
Output:
seaborn pairplotEach combination of variables is represented by a scatter plot, and the diagonal plots show the distribution of each individual variable.
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('tips')
selected_vars = ['total_bill', 'tip']
sns.pairplot(df, vars=selected_vars)
plt.show()
Output:
paiplot seabornThe plots on the diagonal show the distribution of each individual variable. For example, the top left plot shows the distribution of total bills, and the bottom right plot shows the distribution of tips.
The off-diagonal plots show the relationship between two variables. For example, the top right plot shows the relationship between total bill and tip. There is a positive correlation between these two variables, which means that larger bills tend to have larger tips.
2. Pairplot Seaborn: Adding a Hue Color to a Seaborn Pairplot Python
import seaborn
import matplotlib.pyplot as plt
df = seaborn.load_dataset('tips')
seaborn.pairplot(df,hue ='size')
plt.show()
Output:
pairplot seabonThe points in this scatter plot are colored by the value of size, so you can see how the relationship between total_bill and tip varies depending on the size of the party.
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('tips')
sns.pairplot(df, hue="size", palette="husl")
plt.show
Output:
4. Pairplot Seaborn: Diagonal Kind of plotsIn Seaborn's Pairplot, the 'diag_kind' parameter specifies the type of plot to display along the diagonal axis, representing the univariate distribution of each variable. Options include 'hist' for histograms, 'kde' for kernel density estimates, and 'scatter' for scatterplots. Choose based on the nature of the data and analysis goals. Here, let's plot with kernel density estimates.
Python
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('tips')
sns.pairplot(df,diag_kind = 'kde')
plt.show
Output:
5. Pairplot Seaborn:Adjusting Plot KindThe kind parameter allows to change the type of plot used for the off-diagonal plots. You can choose any like scatter, kde, or reg (regression).
Python
sns.pairplot(df, kind='reg')
plt.show()
Output:
Adjusting Plot Kind 6. Pairplot Seaborn:Controlling the MarkersThe markers
parameter allows you to specify different markers for different categories.
sns.pairplot(df, hue='sex', markers=["o", "s"])
plt.show()
Output:
Controlling the Markers 7. Pairplot Seaborn:Limiting the VariablesIf you are interested in only a subset of the variables, you can specify them using the vars
parameter.
sns.pairplot(df, hue='sex', vars=['total_bill', 'tip', 'size'])
plt.show()
Output:
Pairplot Seaborn:Limiting the Variables Advanced Customization With Seaborn PairplotFor advanced customization, you can access the underlying FacetGrid
object and modify it further.
g = sns.pairplot(df, hue='day')
g.fig.suptitle("Pairplot of Tips Dataset", y=1.02) # Add a title
g.set(xticks=[], yticks=[]) # Remove tick labels
plt.show()
Output:
Advanced Customization With Seaborn PairplotRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4