A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.geeksforgeeks.org/3d-visualisation-of-quick-sort-using-matplotlib-in-python/ below:

3D Visualisation of Quick Sort using Matplotlib in Python

# importing all required  modules
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from mpl_toolkits.mplot3d import axes3d
import matplotlib as mp
import numpy as np
import random

# quicksort function
def quicksort(a, l, r):
    if l>=r:
        return 
    x=a[l]
    j=l
    for i in range(l+1, r+1):
        if a[i]<=x:
            j+=1
            a[j], a[i] = a[i], a[j]
        yield a
    a[l], a[j]=a[j], a[l]
    yield a
    
    # yield from statement used to yield 
    # the array after dividing
    yield from quicksort(a, l, j-1)
    yield from quicksort(a, j+1, r)

# function to plot bars
def showGraph():
  
    # for random unique values
    n=int(input("enter array size\n"))
    a=[i for i in range(1, n+1)]
    random.shuffle(a)
    datasetName='Random'
    
    # generator object returned
    # by the function
    generator = quicksort(a, 0, n-1)
    
    algoName='Quick Sort'
    
    # style of the chart
    plt.style.use('fivethirtyeight')
    
    # set colors of the bars
    data_normalizer = mp.colors.Normalize()
    
    color_map = mp.colors.LinearSegmentedColormap(
        "my_map",
        {
            "red": [(0, 1.0, 1.0),
                    (1.0, .5, .5)],
            "green": [(0, 0.5, 0.5),
                      (1.0, 0, 0)],
            "blue": [(0, 0.50, 0.5),
                     (1.0, 0, 0)]
        }
    )

    fig = plt.figure()
    
    ax = fig.add_subplot(projection='3d')
    
    # z values and positions of the bars 
    z = np.zeros(n)
    dx = np.ones(n)
    dy = np.ones(n)
    
    dz = [i for i in range(len(a))]
    # Poly3dCollection returned 
    # into variable rects
    rects = ax.bar3d(range(len(a)), a, z, dx, 
                     dy, dz,
                     color = color_map(data_normalizer(range(n))))
    
    # setting and x and y limits
    # equal to the length of the array
    ax.set_xlim(0, len(a))
    ax.set_ylim(0, int(1.1*len(a)))
    
    ax.set_title("ALGORITHM : "+algoName+"\n"+"DATA SET : "+datasetName, 
                 fontdict={'fontsize': 13, 'fontweight': 'medium',
                           'color' : '#E4365D'})
    # text to plot on the chart
    text = ax.text2D(0.1,0.95, "", horizontalalignment = 'center',
                     verticalalignment = 'center', 
                     transform=ax.transAxes,
                     color = "#E4365D")
    iteration = [0]

    # animation function to be 
    # repeatedly called
    def animate(A, rects, iteration):
      
        # to clear the bars from 
        # the Poly3DCollection object
        ax.collections.clear()
        ax.bar3d(range(len(a)), A, z, dx, 
                 dy, dz, 
                 color = color_map(data_normalizer(range(n))))
        
        iteration[0] += 1
        text.set_text("iterations : {}".format(iteration[0]))
            
    # animate function is called here 
    # and the generator object is passed
    anim = FuncAnimation(fig, func=animate,
        fargs = (rects, iteration), 
       frames = generator, interval=50,
        repeat=False)
    
    # show the plot
    plt.show()

# function call
showGraph()

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4