[1] J. Adams and J. F. Johnson, Endoscopic groups and packets of nontempered representations, Compos. Math. 64 (1987), no. 3, 271–309. Search in Google Scholar
[2] G. Ancona, Décomposition du motif d’un schéma abélien universel, Ph.D. thesis, 2013. Search in Google Scholar
[3] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panor. Synthèses 17, Société Mathématique de France, Paris 2004. Search in Google Scholar
[4] J. Arthur, The L 2 -Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257–290. 10.1007/BF01389042Search in Google Scholar
[5] J. Arthur, L 2 -cohomology and automorphic representations, Canadian Mathematical Society. 1945–1995. Vol. 3, Canadian Mathematical Society, Ottawa (1996), 1–17. Search in Google Scholar
[6] J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, Amer. Math. Soc. Colloq. Publ. 61, American Mathematical Society, Providence 2013. Search in Google Scholar
[7] W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442–528. 10.2307/1970457Search in Google Scholar
[8] A. A. Beĭlinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces. I (Luminy 1981), Astérisque 100, Société Mathématique de France, Paris (1982), 5–171. Search in Google Scholar
[9] A. Borel and W. Casselman, L 2 -cohomology of locally symmetric manifolds of finite volume, Duke Math. J. 50 (1983), no. 3, 625–647. 10.1215/S0012-7094-83-05029-9Search in Google Scholar
[10] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Math. Surveys Monogr. 67, American Mathematical Society, Providence 2000. 10.1090/surv/067Search in Google Scholar
[11] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L-functions (Corvallis 1977), Proc. Sympos. Pure Math. 33. Part 2, American Mathematical Society, Providence (1979), 247–289. 10.1090/pspum/033.2/546620Search in Google Scholar
[12] G. Faltings, Arithmetic varieties and rigidity, Seminar on number theory (Paris 1982/1983), Progr. Math. 51, Birkhäuser, Boston (1984), 63–77. Search in Google Scholar
[13] E. Friedlander and H. Lawson, Moving algebraic cycles of bounded degree, Invent. Math. 132 (1998), no. 1, 91–119. 10.1007/s002220050219Search in Google Scholar
[14] T. Kaletha, A. Minguez, S. W. Shin and P.-J. White, Endoscopic classification of representations: Inner forms of unitary groups, preprint (2014), http://arxiv.org/abs/1409.3731. Search in Google Scholar
[15] N. M. Katz and W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77. 10.1007/BF01405203Search in Google Scholar
[16] R. E. Kottwitz, Shimura varieties and λ-adic representations, Automorphic forms, Shimura varieties, and L-functions. Vol. I (Ann Arbor 1988), Perspect. Math. 10, Academic Press, Boston (1990), 161–209. Search in Google Scholar
[17] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373–444. 10.1090/S0894-0347-1992-1124982-1Search in Google Scholar
[18] R. E. Kottwitz and M. Rapoport, Contribution of the points at the boundary, The zeta functions of Picard modular surfaces, Université de Montréal, Montreal (1992), 111–150. Search in Google Scholar
[19] E. Looijenga, L 2 -cohomology of locally symmetric varieties, Compos. Math. 67 (1988), no. 1, 3–20. Search in Google Scholar
[20] E. Looijenga and M. Rapoport, Weights in the local cohomology of a Baily–Borel compactification, Complex geometry and Lie theory (Sundance 1989), Proc. Sympos. Pure Math. 53, American Mathematical Society, Providence (1991), 223–260. 10.1090/pspum/053/1141203Search in Google Scholar
[21] C. P. Mok, Endoscopic classification of representations of quasi-split unitary groups, preprint (2013), http://arxiv.org/pdf/1206.0882v3. 10.1090/memo/1108Search in Google Scholar
[22] R. Pink, On l-adic sheaves on Shimura varieties and their higher direct images in the Baily–Borel compactification, Math. Ann. 292 (1992), no. 2, 197–240. 10.1007/BF01444618Search in Google Scholar
[23] J. D. Rogawski, Analytic expression for the number of points mod p, The zeta functions of Picard modular surfaces, Université de Montréal, Montreal (1992), 65–109. Search in Google Scholar
[24] L. Saper and M. Stern, L 2 -cohomology of arithmetic varieties, Ann. of Math. (2) 132 (1990), no. 1, 1–69. 10.2307/1971500Search in Google Scholar
[25] J. T. Tate, Jr., Algebraic cycles and poles of zeta functions, Arithmetical algebraic geometry (Purdue University 1963), Harper & Row, New York (1965), 93–110. Search in Google Scholar
[26] D. A. Vogan, Jr. and G. J. Zuckerman, Unitary representations with nonzero cohomology, Compos. Math. 53 (1984), no. 1, 51–90. Search in Google Scholar
[27] J. Wildeshaus, Intermediate extension of chow motives of abelian type, preprint (2013), http://arxiv.org/abs/1211.5327. 10.1016/j.aim.2016.09.032Search in Google Scholar
[28] B. Xu, Endoscopic classification of tempered representations: Quasi-split general even orthogonal group and general symplectic group, preprint (2013), http://arxiv.org/abs/1211.5327. Search in Google Scholar
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4