A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://www.bioconductor.org/packages/devel/bioc/html/../../bioc/html/densvis.html below:

Bioconductor - densvis (development version)

densvis

This is the development version of densvis; for the stable release version, see densvis.

Density-Preserving Data Visualization via Non-Linear Dimensionality Reduction

Bioconductor version: Development (3.22)

Implements the density-preserving modification to t-SNE and UMAP described by Narayan et al. (2020) . The non-linear dimensionality reduction techniques t-SNE and UMAP enable users to summarise complex high-dimensional sequencing data such as single cell RNAseq using lower dimensional representations. These lower dimensional representations enable the visualisation of discrete transcriptional states, as well as continuous trajectory (for example, in early development). However, these methods focus on the local neighbourhood structure of the data. In some cases, this results in misleading visualisations, where the density of cells in the low-dimensional embedding does not represent the transcriptional heterogeneity of data in the original high-dimensional space. den-SNE and densMAP aim to enable more accurate visual interpretation of high-dimensional datasets by producing lower-dimensional embeddings that accurately represent the heterogeneity of the original high-dimensional space, enabling the identification of homogeneous and heterogeneous cell states. This accuracy is accomplished by including in the optimisation process a term which considers the local density of points in the original high-dimensional space. This can help to create visualisations that are more representative of heterogeneity in the original high-dimensional space.

Author: Alan O'Callaghan [aut, cre], Ashwinn Narayan [aut], Hyunghoon Cho [aut]

Maintainer: Alan O'Callaghan <alan.ocallaghan at outlook.com>

Citation (from within R, enter citation("densvis")): Installation

To install this package, start R (version "4.5") and enter:


if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

# The following initializes usage of Bioc devel
BiocManager::install(version='devel')

BiocManager::install("densvis")

For older versions of R, please refer to the appropriate Bioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("densvis")
Details See More Package Archives

Follow Installation instructions to use this package in your R session.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4